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Abstract. Self-duality of Gabidulin codes was investigated in [7] and the authors provided

an if and only if condition for a Gabidulin code to be equivalent to a self-dual maximum

rank distance (MRD) code. In this paper, we investigate the analog problem for general-

ized twisted Gabidulin codes (a larger family of linear MRD codes including the family of

Gabidulin codes). We observe that the condition presented in [7] still holds for generalized

Gabidulin codes (an intermediate family between Gabidulin codes and generalized twisted

Gabidulin codes). However, beyond the family of generalized Gabidulin codes we observe

that some additional conditions are required depending on the additional parameters. Our

tools are similar to those in [7] but we also use linearized polynomials, which leads to further

tools and direct proofs.
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1. Introduction

1.1. Maximum Rank Distance Codes. Let q be a prime power, Fq be the finite field of

q elements and Fmˆnq be the set of mˆ n matrices over Fq. The function d defined by

dpA,Bq :“ rankpA´Bq

on Fmˆnq ˆFmˆnq is a metric called the rank distance on Fmˆnq . A subset C of Fmˆnq , including

at least two matrices, with the rank distance is called a rank metric code. By “a code” we

always mean “a rank metric code” unless otherwise stated. The minimum distance dpCq of

a code C is naturally defined by dpCq :“ mintdpA,Bq : A,B P C and A ‰ Bu. A tight upper

bound for rank metric codes is given in the following.

Proposition 1.1. [2] Let C Ď Fmˆnq be a rank metric code, then

|C| ď qmaxtm,nupmintm,nu´dpCq`1q.

The bound given in Proposition 1.1 is called the Singleton-like bound. A rank metric code

is called maximum rank distance (MRD) code if it meets the Singleton-like bound. MRD

codes have several applications in random network coding, space-time coding, distributed

storage, MIMO communication and cryptology .

As a direct consequence of the classification of Fmˆnq with respect to the rank metric [12,

Theorem 3.4], equivalence between two codes is defined as follows: Two linear rank metric

MSC codes: 11T71, 94B05.
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codes C, C1 Ď Fmˆnq are called equivalent if there exist X P GLpm,Fqq and Y P GLpn,Fqq
such that

(1)
C1 “ XCY if m ‰ n,

C1 “ XCY or C1 “ XpCᵀqY if m “ n,

where the superscript ᵀ denotes the transpose of matrices. In case m “ n, we call the

equivalence proper if C1 “ XCY for some X,Y P GLpn,Fqq.
The dual code of a linear code C Ď Fmˆnq is defined as follows.

(2) CK :“ tA P Fmˆnq : tracepBAᵀq “ 0 for all B P Cu,

where trace denotes the classical matrix trace. Note that CK is a linear code, dimpCq `
dimpCKq “ mn and dpCKq “ mintm,nu ´ dpCq ` 2. Hence, if C is an MRD code, then so

is CK. For more information about duality we refer to [10]. Remark that the duality in (2)

corresponds to the classical inner product when we write matrices in Fmˆnq as vectors in Fmnq .

1.2. Related Work. We briefly summarize the history of constructions of MRD codes with

respect to the equivalence given in equation (1) as follows.

‚ 1978 and 1985: Gabidulin codes were discovered in [2] and independently in [3].

‚ 2005: A generalization of Gabidulin codes, known as generalized Gabidulin codes,

was given in [4].

‚ 2016: Another generalization of Gabidulin codes, called twisted Gabidulin codes,

were discovered in [11]. A particular case of this family was independently discovered

also in [8].

‚ 2016: A more general family including both generalized Gabidulin codes and twisted

Gabidulin codes, known as generalized twisted Gabidulin codes, was remarked

in [11] and investigated in [6].

In the literature, there are also non-linear constructions of MRD codes (see for instance

[1, 9]). However, in this paper we only focus on linear codes since we are interested in duality

questions.

Self-duality of Gabidulin codes was considered in [7] and a criterion for being equivalent

to a self-dual linear MRD code was given (see Theorem 2.2). The authors also provided an

if and only if condition for a Gabidulin code to be equivalent to a self-dual MRD code.

1.3. Our Contributions. In this paper, we investigate the property that a generalized

twisted Gabidulin code is equivalent to a self-dual code. We show in Theorem 3.1(1) that

the conditions in [7] hold for generalized Gabidulin codes. Therefore, Theorem 3.1(1) may

be seen as a natural generalization of [7, Theorem 4].

If we look at other generalized twisted Gabidulin codes (i.e. the ones which are not

generalized Gabidulin), we observe that some additional conditions are required depending

on the additional parameters (see Theorem 3.1(2)).

We want to emphasize that we use the linearized polynomial representation of codewords,

whereas in [7] only the matrix representation came into play. Note that this linearized

polynomial approach allows us to deal with additional tools and derive more direct proofs.
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1.4. Organization of the Paper. In Section 2 we present the linearized polynomial rep-

resentation of rank metric codes and then we introduce the family of generalized twisted

Gabidulin codes using this representation. In addition, we develop some useful tools which

are mostly in the linearized polynomial language.

In Section 3 we provide our main result, together with some important lemmas. Lastly we

prove our main result in Section 4 examining the cases separately.

2. Preliminaries

2.1. Linearized Polynomials and Rank Metric Codes. A polynomial fpxq P Fqnrxs of

the form

(3) fpxq “
l
ÿ

i“0

αix
qi

is called a q-polynomial (or, a linearized polynomial) over Fqn . We call l in (3) the q-degree

of f if αl ‰ 0. Some important facts about linearized polynomials are given below.

‚ fpcα` βq “ cfpαq ` fpβq for all c P Fq and α, β P Fq, where Fq denotes the algebraic

closure of Fq.
‚ The multiplicity of each root of f in Fq is the same and equal to qr where r is the

smallest integer satisfying αr ‰ 0.

‚ The set of roots of f in an extension field of Fqn constitutes a vector space over Fq. In

particular, the set of roots of f in Fqn is a subspace of Fqn over Fq. This set is called

the kernel of f and denoted by kerpfq. The rank of f is defined by n´ dimpkerpfqq

and denoted by rankpfq.

For more information the reader is referred to [5].

Let fpxq P Fqnrxs be a q-polynomial of q-degree at most n´ 1. Let Γ “ pγ1, γ2, . . . , γnq be

an ordered basis of Fqn over Fq. Then, for any α P Fqn we have

(4)

fpαq “ fpc1γ1 ` c2γ2 ` ¨ ¨ ¨ ` cnγnq

“ c1fpγ1q ` c2fpγ2q ` ¨ ¨ ¨ ` cnfpγnq

“

”

fpγ1q fpγ2q . . . fpγnq
ı ”

c1 c2 . . . cn

ıᵀ

“ rγ1 γ2 . . . γns

»

—

—

—

—

–

fpγ1qγ1 fpγ2qγ1 . . . fpγnqγ1
fpγ1qγ2 fpγ2qγ2 . . . fpγnqγ2

...
...

. . .
...

fpγ1qγn fpγ2qγn . . . fpγnqγn

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

c1

c2

...

cn

fi

ffi

ffi

ffi

ffi

fl

for some ci P Fq and 1 ď i ď n, where fpγiqγj P Fq denotes the coefficient of γj if fpγiq is

written as a linear combination of γ1, . . . , γn over Fq for all 1 ď i, j ď n. Let rf sΓ denote the

matrix given by rfpγjqγisi,j P Fnˆnq . Note that there is a one to one correspondence between f

and rf sΓ with respect to the fixed ordered basis Γ. We also have rankpfq “ rankprf sΓq. More-

over, the algebra Fnˆnq with the matrix addition and the matrix multiplication corresponds

to the algebra

Ln :“ tα0x` α1x
q ` ¨ ¨ ¨ ` αn´1x

qn´1
: α0, . . . , αn´1 P Fqnu
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with the addition and the composition of polynomials modulo xq
n
´ x, respectively.

For fpxq “
řn´1
i“0 αix

qi P Ln we define the adjoint polynomial pf of f as

(5) pfpxq :“
n´1
ÿ

i“0

αq
i

n´ix
qi mod xq

n
´ x.

Suppose that Γ is a normal basis of Fqn over Fq, namely Γ “ pγ, γq, . . . , γq
n´1
q for some

normal element γ of Fqn over Fq. Then we define

(6) tpxq :“ Trqn{qpγ
2qx` Trqn{qpγ

1`qqxq ` ¨ ¨ ¨ ` Trqn{qpγ
1`qn´1

qxq
n´1

,

where Trqn{q denotes the trace function on Fqn over Fq given by α ÞÑ α ` αq ` ¨ ¨ ¨ ` αq
n´1

for all α P Fqn . The polynomial tpxq together with adjoint polynomials play a crucial role in

our results, especially in order to understand the transpose of rf sΓ. We summarize this role

in Proposition 2.1 below.

Lemma 2.1. Let tpxq be the polynomial as defined in (6). Then the following hold.

(1) rxqsΓ “ rδi´1,js1ďi,jďn. Hence detprxqsΓq “ p´1qn`1 and rxqsᵀΓ “ rx
qs
´1
Γ .

(2) rpxq
l
q ˝ tpxqsΓ “ rtpxq ˝ px

qlqsΓ “ rpx
qn´l

q ˝ tpxqsᵀΓ for all 0 ď l ď n´ 1.

(3) rαxsᵀΓ “ rt ˝ pαxq ˝ t
´1sΓ.

Proof. (1) The matrix representation rxqsΓ “ rδi´1,js1ďi,jďn is clear when we write fpxq “

xq in equation (4). The other two statements are straightforward from this represen-

tation.

(2) The first equality can be directly seen because each coefficient of tpxq is in Fq. The sec-

ond equality can be observed when we write the statements explicitly using equation

(4).

(3) This statement with a proof is available in [7, Lemma 2].

�

Proposition 2.1. Let tpxq be the polynomial as defined in (6). Then the following hold.

(1) tpxq is a self adjoint polynomial, i.e. ptpxq “ tpxq.

(2) The associated matrix rtsΓ of t is an invertible and symmetric matrix.

(3) For any f P Ln, we have rf sᵀΓ “ rt ˝
pf ˝ t´1sΓ.

Proof. (1) The statement is clear when the definition of tpxq in (6) is used in (5).

(2) Note that rtsΓ is the Gram matrix of the trace bilinear form pα, βq P Fqn ˆ Fqn ÞÑ
Trqn{qpαβq P Fq with respect to the basis Γ, which is symmetric and non-degenerate.
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(3) Any f P Ln can be written as fpxq “
řn´1
i“0 αix

qi for some α0, α1, . . . , αn´1 P Fqn .

Therefore,

rfpxqsᵀΓ “

«

n´1
ÿ

i“0

αix
qi

ffᵀ

Γ

“

«

n´1
ÿ

i“0

pαixq ˝ px
qiq

ffᵀ

Γ

“

n´1
ÿ

i“0

”

pαixq ˝ px
qiq

ıᵀ

Γ

“

n´1
ÿ

i“0

”

xq
i
ıᵀ

Γ
rαixs

ᵀ
Γ

“

n´1
ÿ

i“0

”

xq
´i
ı

Γ
rαixs

ᵀ
Γ (by Lemma 2.1(1))

“

n´1
ÿ

i“0

”

xq
´i
ı

Γ
rtpxqsΓ rαixsΓ rt

´1pxqsΓ (by Lemma 2.1(3))

“

n´1
ÿ

i“0

rtpxqsΓ

”

xq
´i
ı

Γ
rαixsΓ rt

´1pxqsΓ (by Lemma 2.1(2))

“

n´1
ÿ

i“0

rtpxqsΓ

”

αq
´i

i xq
´i
ı

Γ
rt´1pxqsΓ

“ rtpxqsΓ

˜

n´1
ÿ

i“0

”

αq
´i

i xq
´i
ı

Γ

¸

rt´1pxqsΓ

“ rtpxq ˝ pfpxq ˝ t´1pxqsΓ.

�

When we consider the algebra Ln as the ambient space instead of the algebra Fnˆnq we

observe that the equivalence in (1) for linear codes appears as follows: If C and C1 are two

linear subspaces of Ln over Fq, then C and C1 are equivalent if and only if there exist in Ln
invertible polynomials g and h such that

(7)
C1 “ g ˝ C ˝ h :“ tgpxq ˝ fpxq ˝ hpxq mod xq

n
´ x : fpxq P Cu, or

C1 “ g ˝ pC ˝ h :“ tgpxq ˝ pfpxq ˝ hpxq mod xq
n
´ x : fpxq P Cu,

where the ˝ operation denotes the composition, i.e., f1pxq ˝ f2pxq “ f1pf2pxqq mod xq
n
´ x

for fi P Ln. Note that ˝ is associative on Ln. Furthermore, the minimum distance dpCq is

indeed the minimum non-zero rank of the elements in C because C is closed under addition.

To present rank metric codes we usually prefer Ln as the ambient space instead of Fnˆnq ,

since we make use of properties of linearized polynomials in general. In case we need the

matrix expansion, we use the notation rf sΓ for f P Ln.

Recall that the norm function Normqn{q on Fqn over Fq is given by α ÞÑ α1`q`¨¨¨`qn´1
for

all α P Fqn . Now using the norm function we define generalized twisted Gabidulin codes.
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Theorem 2.1. [11, 6] Let k, h, s P N and η P Fqn satisfying 1 ď k ď n´ 1, gcdpn, sq “ 1 and

Normqn{qpηq ‰ p´1qnk, where gcd denotes the greatest common divisor of integers. Then

(8) Hn,k,spη, hq :“ tα0x` α1x
qs ` ¨ ¨ ¨ ` αk´1x

qspk´1q
` ηαq

h

0 x
qsk : α0, . . . , αk´1 P Fqnu

is an MRD code of minimum distance n´ k ` 1.

Hn,k,spη, hq is called a generalized twisted Gabidulin code. Note that h becomes useless

when η “ 0. In this case the code is also called a generalized Gabidulin code and denoted by

Gn,k,s. Generalized Gabidulin codes were first considered in [4]. The codes Gn,k,1 which form

a sub-family of the generalized Gabidulin codes were discovered earlier in [2, 3]. Usually they

are called Gabidulin codes.

2.2. Key Tools for Self-duality. Next we present some basic results, which we will use in

the following section while investigating self-duality of generalized twisted Gabidulin codes.

From now on, we fix the following assumptions and notations.

‚ γ is a normal element of Fqn over Fq,
‚ Γ “ pγ, γq, . . . , γq

n´1
q is a normal basis of Fqn over Fq constructed by γ,

‚ q is odd ([7, Theorem 1] indicates that no self-dual MRD codes exist when q is even),

‚ m “ n and n is even (no self-dual codes exist when n is odd; recall also that dimpCq`
dimpCKq “ n2),

‚ n ě 4 (note that for n “ 2, [7, Proposition 1] determines completely all MRD codes

which are equivalent to a self-dual code.).

We use the following theorem to characterize the codes which are properly equivalent to

self-dual codes.

Theorem 2.2. [7] Let C Ď Fnˆnq be a linear rank metric code. Then C is properly equiva-

lent to a self-dual code if and only if there are symmetric matrices A,B P Fnˆnq such that

detpAq, detpBq P pF‹qq2 and CK “ ACB.

The next lemma provides some essential information about linearized monomials αxq
i
P Ln,

where α P Fqn and 0 ď i ď n´ 1. It is a slightly extended version of [7, Lemma 4].

Lemma 2.2. Let tpxq P Ln be the linearized polynomial defined in equation (6). Then the

following statements hold.

(1) detrtpxqsΓ R pF‹qq2 and detrαxsΓ “ Normqn{qpαq for all α P Fqn.

(2) rtpxq ˝ pαxqsΓ and rpαxq ˝ t´1pxqsΓ are symmetric for all α P Fqn.

(3) The following statements are equivalent.

(a) rtpxq ˝ pxq
l
q ˝ pαxqsΓ is symmetric,

(b) rpαxq ˝ pxq
l
q ˝ t´1pxqsΓ is symmetric,

(c) either l “ n{2 and α P F‹
qn{2

, or l “ 0 and α P F‹qn.

Proof. (1) The first statement is exactly [7, Lemma 4(v)], where also a proof is available.

The second statement is coming from the following correspondence. Let

‚ F1 “ Fqn , with the usual addition and multiplication of the field,

‚ F2 “ tαx : α P Fqnu Ď Fqnrxs, with the addition and composition of polynomials,
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‚ F3 “ trαxsΓ : α P Fqnu Ď Fnˆnq , with the addition and multiplication of matrices.

Then there is an isomorphism between any two of these three mathematical structures,

namely

F1 Ø F2 Ø F3

α Ø αx Ø rαxsΓ.

Now, let gpyq “ yn`gn´1y
n´1` . . .`g1y`g0 P Fqrys be the characteristic polynomial

of rαxsΓ for some α P Fqn . Then the isomorphism between F1 and F3 implies that

gpyq is also the characteristic polynomial of α P Fqn . Hence,

detrαxsΓ “ p´1qng0 “ Normqn{qpαq.

(2) The statement can be verified directly applying Proposition 2.1(3) to obtain the

transpose of each statement.

(3) The statement is exactly [7, Lemma 4(viii)] and a proof is available there.

�

Now we introduce another important result, which is a generalization of [7, Lemma 3(iv)].

Lemma 2.3. For linearized monomials αxq
l

we can determine traceprαxq
l
sΓq for all 0 ď l ď

n´ 1 and α P Fqn as follows.

(1) traceprαxsΓq “ Trqn{qpαq.

(2) traceprαxq
l
sΓq “ 0 for all 1 ď l ď n´ 1.

Note that Lemma 2.3 is a well-known fact and was remarked in [11], too. However,

especially the proof of Lemma 2.3(1) is not available neither in [7] nor in [11]. Hence we give

an explicit proof of the lemma below.

Proof. Let A “ rαxsΓ. Using normality of Γ we obtain

αγq
j´1
“

n
ÿ

i“1

Aijγ
qi´1

ñ αq
n´j

γq
n´1

“

n
ÿ

i“1

Aijγ
qi´j´1

ñ

n
ÿ

j“1

αq
n´j

γq
n´1

“

n
ÿ

j“1

n
ÿ

i“1

Aijγ
qi´j´1

.

The left hand side of the last statement is clearly Trqn{qpαqγ
qn´1

. The right hand side can

be rewritten by taking j from i to i` n´ 1 and hence we obtain the following.

(9) Trqn{qpαqγ
qn´1

“

˜

n
ÿ

i“1

Ai,i

¸

γq
n´1

`

˜

n
ÿ

i“1

Ai,i`1

¸

γq
n´2

` ¨ ¨ ¨ `

˜

n
ÿ

i“1

Ai,i´1

¸

γ.

The statements of the lemma can be observed from equation (9) as follows.

(1) In equation (9), the coefficient of each γq
i

for all 0 ď i ď n´ 1 is clearly in Fq. Also

remember that Γ is a basis of Fqn over Fq. The uniqueness of the coefficients in Fq
with respect to a fixed basis implies

Trqn{qpαq “
n
ÿ

i“1

Ai,i,
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which completes the first part of the proof.

(2) Note that αxq
l
“ pαxq ˝ pxq

l
q and

rxq
l
sΓ “ rx

qslΓ “ rδi´1,js
l
1ďi,jďn “ rδi´l,js1ď,i,jďn

which implies rαxq
l
sΓ “ Arδi´l,js1ď,i,jďn. Thus we have

traceprαxq
l
sΓq “

n
ÿ

i“1

Ai,i`l,

which is zero for 1 ď l ď n´ 1 according to the equation (9).

�

2.3. Equivalence Conditions and Automorphism Groups of Rank Metric Codes.

Now we introduce the proper automorphism group and full automorphism group of a rank

metric code. Let C be a linear code in Ln, then the set of pairs pgpxq, hpxqq in Ln ˆ Ln
satisfying

(10) C “ gpxq ˝ C ˝ hpxq

forms a group under the multiplication defined by

(11) pg1pxq, h1pxqqpg2pxq, h2pxqq “ pg1pxq ˝ g2pxq, h2pxq ˝ h1pxqq.

This group is called the proper automorphism group of C and denoted by AutppqpCq.
Similarly, the full automorphism group of C is defined as the group generated by the union

of AutppqpCq and the set of rgpxq, hpxqs couples satisfying

(12) C “ gpxq ˝ t´1pxq ˝ pC ˝ tpxq ˝ hpxq

and denoted by AutpCq. We may determine this set up more explicitly as follows: Define

pg, hq : f ÞÑ g ˝ f ˝ h,

rg, hs : f ÞÑ g ˝ t ˝ pf ˝ t´1 ˝ h.

on the set of automorphisms of C Ď Ln and extend the multiplication in equation (11) from

AutppqpCq to AutpCq as

‚ rg1, h1srg2, h2s “ pg1 ˝ t ˝xh2 ˝ t
´1, t ˝ pg2 ˝ t

´1 ˝ h1q,

‚ rg1, h1spg2, h2q “ rg1 ˝ t ˝xh2 ˝ t
´1, t ˝ pg2 ˝ t

´1 ˝ h1s,

‚ pg1, h1qrg2, h2s “ rg1 ˝ g2, h2 ˝ h1s.

In that way we create the full automorphism group AutpCq of a rank metric code C Ď Ln.

Therefore, taking only one fixed non-proper automorphism rg, hs (if any exist), we observe

that

AutpCq “ xAutppqpCq Y trg, hsuy.

Also note that the index of AutppqpCq in AutpCq is either one or two, since the square of a

non-proper automorphism is proper.
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3. Self-duality of generalized twisted Gabidulin codes

From now on we fix k “
n

2
ą 1 since we investigate self-duality and assumed n ě 4 as

mentioned at the beginning of Section 2.2.

The following lemma can be derived directly from Section 2 and Section 3 in [11] and [6,

Theorem 4.4].

Lemma 3.1. Two generalized twisted Gabidulin codes Hn,n
2
,spη1, h1q and Hn,n

2
,spη2, h2q are

properly equivalent, i.e.,

Hn,n
2
,spη1, h1q “ f ˝Hn,n

2
,spη2, h2q ˝ g

if and only if h1 “ h2, fpxq “ αxq
i
, gpxq “ βxq

´i
and ηq

i

1 “ η2α
qh1´1βq

i`h1´qs
n
2`i

for some

α, β P F‹qn and 0 ď i ď n´ 1.

Corollary 3.1. The proper automorphism group of the generalized twisted Gabidulin code

Hn,n
2
,spη, hq is

AutppqpHn,n
2
,spη, hqq “

!

pαxq
i
, βxq

´i
q : α, β P F‹qn , 0 ď i ď n´ 1, ηq

i
“ ηαq

h´1βq
i`h´qs

n
2`i

)

.

Corollary 3.2. The proper automorphism group AutppqpGn,k,sq of a generalized Gabidulin

code Gn,k,s is

AutppqpGn,k,sq “ tpαxq
i
, βxq

´i
q : α, β P F‹qn , 0 ď i ď n´ 1u.

The following lemma is a slight generalization of [7, Corollary 1] from Gn,k,1 to Gn,k,s.

Lemma 3.2. AutpGn,k,sq ‰ AutppqpGn,k,sq if k ą 1.

Proof. On Ln, using

pg, hq : f ÞÑ g ˝ f ˝ h,

rg, hs : f ÞÑ g ˝ t ˝ pf ˝ t´1 ˝ h.

we observe that

AutpGn,s,kq “ xAutppqpGn,s,kq Y
!

rt´1, t ˝ pxq
spk´1q

qs

)

y.

The index rAutpGn,s,kq : AutppqpGn,s,kqs is obviously either 1 or 2. Suppose that the index

is 1, i.e., AutpGn,s,kq “ AutppqpGn,s,kq. Then there exist α, β P Fqn and 0 ď i ď n ´ 1 such

that

pαxq
i
, βxq

´i
q “ rt´1, t ˝ pxq

spk´1q
qs.

However, for x P Gn,s,k we have

pαxq
i
, βxq

´i
qpxq “ αβq

i
x,

”

t´1, t ˝ pxq
spk´1q

q

ı

pxq “ xq
spk´1q

which are clearly not equal if k ą 1. Hence the assumption is false, i.e., AutpGn,s,kq ‰
AutppqpGn,s,kq. �

The following lemma is also available in [11, 6] and easy to prove directly by computation.
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Lemma 3.3. (1) The adjoint {Gn,n
2
,s of a generalized Gabidulin code Gn,n

2
,s is properly

equivalent to itself.

(2) The adjoint {Hn,n
2
,spη, hq of a generalized twisted Gabidulin code Hn,n

2
,spη, hq is prop-

erly equivalent to Hn,n
2
,spη

´q´h
, sn2 ´ hq when η is nonzero.

Now we can explicitly determine the dual of a generalized twisted Gabidulin code in terms

of another generalized twisted Gabidulin code.

Lemma 3.4. The dual code of a generalized twisted Gabidulin code Hn,n
2
,spη, hq is

HKn,n
2
,spη, hq “ t ˝ pxq

sn
2
q ˝Hn,n

2
,sp´η

qs
n
2´h

,´hq ˝ t´1.

Proof. Let C1 :“ t ˝ pxq
sn
2
q ˝Hn,n

2
,sp´η

qs
n
2´h

,´hq ˝ t´1. Clearly

dim C1 “ n2

2
“ n2 ´

n2

2
“ dimLn ´ dimHn,n

2
,spη, hq “ dimHKn,n

2
,spη, hq.

Hence it is enough to show that C1 Ď HKn,n
2
,spη, hq. For any f P Hn,n

2
,spη, hq and g P C1, we

have

f ˝
`

t ˝ pg ˝ t´1
˘

“ θ0x` θ1x
q ` ¨ ¨ ¨ ` θn´1x

qn´1

for some θ0, θ1, . . . , θn´1 P Fqn . Then,

tracerf ˝
`

t ˝ pg ˝ t´1
˘

sΓ “ tracerθ0xsΓ ` tracerθ1x
qsΓ ` ¨ ¨ ¨ ` tracerθn´1x

qn´1
sΓ

Here, the right hand side is exactly tracerθ0xsΓ by Lemma 2.3(2). When we apply Lemma

2.3(1) and explicitly write θ0 we observe that

tracerθ0xsΓ “ Trqn{qpθ0q “ Trqn{q

´

ηαq
h
βq

sk
´ ηq

n´h
αβq

n´h´sk
¯

“ 0

for some α and β in Fqn . In conclusion we have

trace
`

rf sΓrgs
ᵀ
Γ

˘

“ tracerf ˝
`

t ˝ pg ˝ t´1
˘

sΓ “ 0,

i.e. C1 Ď HKn,n
2
,spη, hq. Thus the proof is completed. �

Lastly we provide a technical lemma that we multiply use in the proof of the main theorem.

Lemma 3.5. Let q ” 3 mod 4 and n ” 2 mod 4. If ζ P F‹qn satisfies

(13) ζq
n{2´1 “ ´1,

then Normqn{qpζq is a square in Fq.

Proof. Let Normqn{2{qpζq “ c, then cq
n{2´1 “ p´1qn{2 “ ´1 ‰ 1, i.e., c R Fqn{2 and hence

c R Fq. Additionally, equation (13) implies ζq
n{2
“ ´ζ and hence

Normqn{qpζq “ ζ1`q`...`qn{2´1
p´ζq ¨ p´ζqq ¨ ¨ ¨ p´ζq

n{2´1
q “ p´1qn{2c2 “ ´c2,

i.e., c2 P Fq (whereas c R Fq). In other words, c2 is a non-square in Fq. On the other

hand, also ´1 is a non-square in Fq (since q ” 3 mod 4 and n ” 2 mod 4). Therefore,

Normqn{qpζq “ ´c
2 is a square in Fq. �

Now we give the main theorem of this paper.
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Theorem 3.1. Let η be a non-zero element in Fqn satisfying Normqn{qpηq ‰ 1. Then the

following hold.

(1) Case η “ 0: A generalized twisted Gabidulin code Hn,n
2
,spη, hq “ Gn,n

2
,s is equivalent

to a self-dual MRD code if and only if n ” 2 mod 4 and q ” 3 mod 4.

(2) Case η ‰ 0: A generalized twisted Gabidulin code Hn,n
2
,spη, hq is

‚ properly equivalent to a self-dual MRD code if and only if n ” 2 mod 4, q ” 3

mod 4, h P t0, n{2u and Normqn{qpηq is a non-square in F‹q.
‚ non-properly equivalent to a self-dual MRD code if and only if n ” 2 mod 4,

q ” 3 mod 4, h P t0, n{2u and Normqn{qpηq is a square in Fq.

Remark that the η “ 0 case in Theorem 3.1 is a natural generalization of [7, Theorem 4].

4. Proof of Theorem 3.1

In this section we prove Theorem 3.1 considering the cases separately.

4.1. Case η “ 0. In this case the proof runs similar to that in [7].

pñq : Suppose that Gn,n
2
,s is equivalent to a self-dual MRD code C. Lemma 3.2 says that

Gn,n
2
,s has non-proper automorphisms. Thus Gn,n

2
,s and C are properly equivalent without

loss of generality. Next, using Lemma 3.4 in Theorem 2.2 we write

tpxq ˝ pxq
sn
2
q ˝ Gn,n

2
,s ˝ t

´1pxq “ apxq ˝ Gn,n
2
,s ˝ bpxq,

where rasΓ, rbsΓ are symmetric and detrasΓ, detrbsΓ P pF‹qq2. Now Corollary 3.2 implies that

(14) αxq
i
“ a´1pxq ˝ tpxq ˝ pxq

sn
2
q and βxq

´i
“ t´1pxq ˝ b´1pxq

for some α, β P F‹qn and 0 ď i ď n´ 1. Then

(15) apxq “ tpxq ˝ pxq
sn
2´i

q ˝ pα´1xq and bpxq “ pβ´q
i
xq ˝ pxq

i
q ˝ t´1pxq.

Since a and b are symmetric, by Lemma 2.2(3) we deduce the following two possibilities:

(16) i “ 0 and α P F‹qn{2 , or i “
n

2
and β P F‹qn{2

(Recall that s is odd since gcdps, nq “ 1, and that β´q
n{2
P F‹

qn{2
implies β P F‹

qn{2
). Fur-

thermore detrasΓ,detrbsΓ P pF‹qq2. So we can interpret both possibilities in (16) separately as

follows.

Subcase 1. Suppose that i “ 0 and α P F‹
qn{2

. Then, on the first equation of (15) we

observe that

– Normqn{qpα
´1q “ rα´1xsΓ is a square in Fq, since α P F‹

qn{2
and by Lemma 2.2(1),

– detrtsΓ is a non-square in Fq, by Lemma 2.2(1), and

– detrxq
sn
2
s “ p´1q

n
2 , by Lemma 2.1(1).

Therefore, to obtain that detrasΓ is a square in Fq, we must have that p´1q
n
2 is a

non-square in F‹q .
Subcase 2. Suppose that i “ n

2 and β P F‹
qn{2

. Then, on the second equation of (15)

we observe similarly that

– Normqn{qpβ
´qiq is a square in Fq,
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– detrt´1sΓ is a non-square in Fq, and

– detrxq
n
2
s “ p´1q

n
2 .

Therefore, to obtain that detrbsΓ is a square in Fq, we must again have that p´1q
n
2 is

a non-square in F‹q .
Consequently, we deduce that p´1qn{2 R pF‹qq2 for both cases and this occurs only if n ” 2

mod 4 and q ” 3 mod 4.

pðq : Reverse steps of part pñq can be applied to finish the proof.

4.2. Case η ‰ 0 and the Equivalence is Proper. In this case the proof runs similar to

the proof of the previous case but we use some additional properties, especially from Lemma

3.1.

pñq : Suppose that Hn,n
2
,spη, hq is properly equivalent to a self-dual MRD code C. Then

using Lemma 3.4 in Theorem 2.2 we obtain that

t ˝ pxq
sn
2
q ˝Hn,n

2
,sp´η

qs
n
2´h

,´hq ˝ t´1 “ a ˝Hn,n
2
,spη, hq ˝ b

for some invertible linearized polynomials apxq, bpxq P Ln, where rasΓ and rbsΓ are symmetric

matrices and detrasΓ,detrbsΓ are squares in F‹q . Lemma 3.1 implies the equations

αxq
i
“ a´1pxq ˝ tpxq ˝ pxq

sn
2
q and βxq

´i
“ t´1pxq ˝ b´1pxq

for some α, β P F‹qn and 0 ď i ď n ´ 1. Remark that this set of equations are exactly the

set of equations in (14). Applying similar arguments in Section 4.1 we obtain equation (15),

then the possibilities in (16) and hence the result that p´1qn{2 is a non-square in Fq, which

occurs only if

(17) n ” 2 mod 4 and q ” 3 mod 4.

In addition, Lemma 3.1 also implies that h P t0, n2 u and

(18) ´1 “ α1´qhβq
sn
2`i

´qh`i
ηq

i´qs
n
2´h

.

We analyze the possibilities in (16) on equation (18) for h “ 0 and h “ n{2 separately as

follows.

‚ Subcase 1. Suppose that h “ 0.

– Subcase 1.1. In case i “ n{2 and β P F‹
qn{2

, equation (18) implies that ´1 “

β1´qn{2 “ 1, a contradiction.

– Subcase 1.2. In case i “ 0 and α P F‹
qn{2

, we observe from the equations in (15)

and Lemma 2.2(1) that Normqn{qpβq is a non-square in Fq since detprbsΓq is a

square in Fq. On the other hand, equation (18) reduces to ´1 “ βq
n{2´1η1´qn{2 .

For ζ “ β{η we get

ζq
n{2´1 “ ´1.

Considering (17) and using Lemma 3.5 we deduce that Normqn{qpζq is a square

in Fq. Combining both we see that Normqn{qpηq “
Normqn{qpβq

Normqn{qpζq
is a non-square

in Fq.
‚ Subcase 2. Suppose that h “ n{2.
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– Subcase 2.1. In case i “ 0 and α P F‹
qn{2

, equation (18) implies that ´1 “

α1´qn{2 “ 1, a contradiction.

– Subcase 2.2. In case i “ n{2 and β P F‹
qn{2

, we observe from the equations in

(15) and Lemma 2.2(1) that Normqn{qpαq is a non-square in Fq. On the other

hand, equation (18) reduces to ´1 “ α1´qn{2ηq
n{2´1. Taking ζ “ α{η we get

ζq
n{2´1 “ ´1

again. Considering (17) and using Lemma 3.5 we deduce that Normqn{qpζq is

a square in Fq. Combining both we see that Normqn{qpηq “
Normqn{qpαq

Normqn{qpζq
is a

non-square in Fq.

pðq : Reverse steps of part pñq can be applied to complete the proof.

4.3. Case η ‰ 0 and the Equivalence is Non-proper. In this case our proof is similar

to the case in Section 4.2 with some differences.

pñq : Suppose that Hn,n
2
,spη, hq is non-properly equivalent to a self-dual MRD code C.

Then pH and C are properly equivalent. Using Lemma 3.3 in Theorem 2.2 we get

HKn,n
2
,s

´

η´q
´h
, s
n

2
´ h

¯

“ a ˝Hn,n
2
,s

´

η´q
´h
, s
n

2
´ h

¯

˝ b

and according to Lemma 3.4 we obtain

t ˝
´

xq
sn
2
¯

˝Hn,n
2
,s

´

´η´q
sn
2´2h

, h´ s
n

2

¯

˝ t´1 “ a ˝Hn,n
2
,s

´

η´q
´h
, s
n

2
´ h

¯

˝ b

for some invertible linearized polynomials apxq, bpxq P Ln, where rasΓ and rbsΓ are symmetric

matrices and detrasΓ,detrbsΓ are squares in F‹q . Then by Lemma 3.1 we obtain that

αxq
i
“ a´1pxq ˝ tpxq ˝ pxq

sn
2
q and βxq

´i
“ t´1pxq ˝ b´1pxq

for some α, β P F‹qn and 0 ď i ď n´1, similarly. Remark that this set of equations are exactly

the set of equations in (14). Applying similar arguments in Section 4.1 we obtain equation

(15), then the possibilities in (16) and hence the result that p´1qn{2 is a non-square in Fq,
which occurs only if the conditions in (17) hold.

In addition, Lemma 3.1 also implies that h P t0, n2 u and

(19) ´1 “ α1´qs
n
2´h

βq
sn
2`i

´qs
n
2`i´h

ηq
sn
2 ´qi´h

.

We analyze the possibilities in (16) on equation (19) for h “ 0 and h “ n{2 separately as

follows.

‚ Subase 1. Suppose that h “ 0.

– Subcase 1.1. In case i “ n{2 and β P F‹
qn{2

we see by equation (15) that

Normqn{qpαq is a non-square in Fq. Furthermore equation (19) leads to

αq
n{2´1 “ ´1.

Using Lemma 3.5 we deduce that Normqn{qpαq is a square in Fq, contradiction.
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– Subcase 1.2. In case i “ 0 and α P F‹
qn{2

, equation (19) reduces to

(20) ηq
n{2´1 “ ´1,

since αq
n{2´1 “ 1. By Lemma 3.5 we deduce that Normqn{qpηq is a square in Fq.

‚ Subcase 2. Suppose that h “ n{2.

– Subcase 2.1. In case i “ 0 and α P F‹
qn{2

we see by equation (15) that

Normqn{qpβq is a non-square in Fq. However, equation (19) reduces to

βq
n{2´1 “ ´1.

That is, by Lemma 3.5, Normqn{qpβq is a square in Fq, contradiction.

– Subcase 2.2. In case i “ n{2 and β P F‹
qn{2

, equation (19) leads to equation

(20), which again means that Normqn{qpηq is a square in Fq.
pðq : Reverse steps of part pñq complete the proof.
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