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ABSTRACT. Self-duality of Gabidulin codes was investigated in [7] and the authors provided
an if and only if condition for a Gabidulin code to be equivalent to a self-dual maximum
rank distance (MRD) code. In this paper, we investigate the analog problem for general-
ized twisted Gabidulin codes (a larger family of linear MRD codes including the family of
Gabidulin codes). We observe that the condition presented in [7] still holds for generalized
Gabidulin codes (an intermediate family between Gabidulin codes and generalized twisted
Gabidulin codes). However, beyond the family of generalized Gabidulin codes we observe
that some additional conditions are required depending on the additional parameters. Our
tools are similar to those in [7] but we also use linearized polynomials, which leads to further

tools and direct proofs.

Keywords: Rank metric codes, self-dual maximum rank distance codes, generalized
twisted Gabidulin codes, linearized polynomials.

Mathematics Subject Classification: 11T71, 94B05.

1. INTRODUCTION

1.1. Maximum Rank Distance Codes. Let ¢ be a prime power, I, be the finite field of
q elements and F7**™ be the set of m x n matrices over ;. The function d defined by

d(A, B) :=rank(A — B)

on Fi*™ x F*™™ is a metric called the rank distance on Fj**". A subset C of F**", including
at least two matrices, with the rank distance is called a rank metric code. By “a code” we
always mean “a rank metric code” unless otherwise stated. The minimum distance d(C) of
a code C is naturally defined by d(C) := min{d(A, B) : A,B € C and A # B}. A tight upper
bound for rank metric codes is given in the following.

Proposition 1.1. [2] Let C S F**" be a rank metric code, then

|C | < qmax{m,n} (min{m,n}—d(C)+1) '

The bound given in Proposition 1.1 is called the Singleton-like bound. A rank metric code
is called mazimum rank distance (MRD) code if it meets the Singleton-like bound. MRD
codes have several applications in random network coding, space-time coding, distributed
storage, MIMO communication and cryptology .

As a direct consequence of the classification of Fy'*" with respect to the rank metric [12,
Theorem 3.4], equivalence between two codes is defined as follows: Two linear rank metric

MSC codes: 11T71, 94B05.
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codes C,C" < Fi**™ are called equivalent if there exist X € GL(m,F;) and Y € GL(n,F,)
such that

C' = XCY if m # n,

1
W) C'=XCY or ' = X(CT)Y if m =n,

where the superscript T denotes the transpose of matrices. In case m = n, we call the
equivalence proper if C' = XCY for some X,Y € GL(n,F,).
The dual code of a linear code C < Fy"*" is defined as follows.

(2) Ct:={Ae Fg" : trace(BAT) = 0 for all B € C},

where trace denotes the classical matrix trace. Note that C' is a linear code, dim(C) +
dim(Ct) = mn and d(Ct) = min{m,n} — d(C) + 2. Hence, if C is an MRD code, then so
is C*. For more information about duality we refer to [10]. Remark that the duality in (2)

corresponds to the classical inner product when we write matrices in Fg**" as vectors in Fy™.

1.2. Related Work. We briefly summarize the history of constructions of MRD codes with

respect to the equivalence given in equation (1) as follows.

e 1978 and 1985: Gabidulin codes were discovered in [2] and independently in [3].
e 2005: A generalization of Gabidulin codes, known as generalized Gabidulin codes,
was given in [4].
e 2016: Another generalization of Gabidulin codes, called twisted Gabidulin codes,
were discovered in [11]. A particular case of this family was independently discovered
also in [8].
e 2016: A more general family including both generalized Gabidulin codes and twisted
Gabidulin codes, known as generalized twisted Gabidulin codes, was remarked
in [11] and investigated in [6].
In the literature, there are also non-linear constructions of MRD codes (see for instance
[1, 9]). However, in this paper we only focus on linear codes since we are interested in duality
questions.
Self-duality of Gabidulin codes was considered in [7] and a criterion for being equivalent
to a self-dual linear MRD code was given (see Theorem 2.2). The authors also provided an
if and only if condition for a Gabidulin code to be equivalent to a self-dual MRD code.

1.3. Our Contributions. In this paper, we investigate the property that a generalized
twisted Gabidulin code is equivalent to a self-dual code. We show in Theorem 3.1(1) that
the conditions in [7] hold for generalized Gabidulin codes. Therefore, Theorem 3.1(1) may
be seen as a natural generalization of [7, Theorem 4].

If we look at other generalized twisted Gabidulin codes (i.e. the ones which are not
generalized Gabidulin), we observe that some additional conditions are required depending
on the additional parameters (see Theorem 3.1(2)).

We want to emphasize that we use the linearized polynomial representation of codewords,
whereas in [7] only the matrix representation came into play. Note that this linearized
polynomial approach allows us to deal with additional tools and derive more direct proofs.
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1.4. Organization of the Paper. In Section 2 we present the linearized polynomial rep-
resentation of rank metric codes and then we introduce the family of generalized twisted
Gabidulin codes using this representation. In addition, we develop some useful tools which
are mostly in the linearized polynomial language.

In Section 3 we provide our main result, together with some important lemmas. Lastly we
prove our main result in Section 4 examining the cases separately.

2. PRELIMINARIES

2.1. Linearized Polynomials and Rank Metric Codes. A polynomial f(z) € Fgn[z] of
the form

l .
(3) fl@) =)
i=0

is called a g-polynomial (or, a linearized polynomial) over Fyn. We call [ in (3) the g-degree
of f if oy # 0. Some important facts about linearized polynomials are given below.

o flca+fB) =cf(a)+ f(B) for all c € F, and «, 8 € F,, where F, denotes the algebraic
closure of IF,.

e The multiplicity of each root of f in Fq is the same and equal to ¢" where r is the
smallest integer satisfying «, # 0.

e The set of roots of f in an extension field of F,» constitutes a vector space over F,. In
particular, the set of roots of f in Fy» is a subspace of Fyn» over F,. This set is called
the kernel of f and denoted by ker(f). The rank of f is defined by n — dim(ker(f))
and denoted by rank(f).

For more information the reader is referred to [5].
Let f(x) € Fgn[z] be a g-polynomial of g-degree at most n — 1. Let I' = (y1,72,...,7n) be
an ordered basis of Fyn over F,. Then, for any o € Fgn we have

fla) = flam +eye+ -+ )
crf(m) +eaf(y) +--- +enf(m)

[ fan fe) o s [[@ e a]

(4) f(’Yl)'Yl f(72)71 s f(’Yn)’Yl a
f(2)

f(’yl)vz (72 Y2 o f(’yn)% €2
[’Yl Y2 .- ’Vn] : .

fO)y 2y o fOm)m Cn

for some ¢; € Fy and 1 < i < n, where f(v;),, € F; denotes the coefficient of v; if f(v;) is

Il
—~~

written as a linear combination of v1,...,7, over F, for all 1 <i,j < n. Let [f]r denote the
matrix given by [f(7;)y;]i; € Fy*". Note that there is a one to one correspondence between f
and [ f]r with respect to the fixed ordered basis I'. We also have rank(f) = rank([f]r). More-
over, the algebra Fy*" with the matrix addition and the matrix multiplication corresponds
to the algebra

n—1

Ly :={oz+arz?+ - +ap_127  :ap,...,0n-1 EFp}
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with the addition and the composition of polynomials modulo z¢" — z, respectively.
For f(z) = Z?:_ol a;x?" € L, we define the adjoint polynomial f of f as

n—1 ) )
(5) flx) = Z ozf;iacql mod z¢" — .
=0
Suppose that I" is a normal basis of Fyn over Fy, namely I' = (7,79, ... ,’yqnil) for some

normal element vy of Fy» over F,. Then we define

n—1

(6) t(zx) := Trqn/q('yz)x + Trqn/q('qu)a:q + -+ Trqn/q('qun_l)xq ,

n—1

where Trgn, denotes the trace function on Fyn over Fy given by v — o+ a? + -+ + o1
for all @ € Fgn. The polynomial t(x) together with adjoint polynomials play a crucial role in
our results, especially in order to understand the transpose of [f]p. We summarize this role
in Proposition 2.1 below.

Lemma 2.1. Let t(x) be the polynomial as defined in (6). Then the following hold.

(1) [ = [0ims hisigen- Hence det([a]r) = (~1)"* and [27]] = [o7]5".
2) [(@®) o ta@)]r = [z) o @)l = [(a") o )] for allO <L <n—1.
(3) [oalf = [t (ox) o~ ]r.

Proof. (1) The matrix representation [29|r = [d;—1,;]1<i,j<n is clear when we write f(x) =
27 in equation (4). The other two statements are straightforward from this represen-
tation.

(2) The first equality can be directly seen because each coefficient of ¢(x) is in F;. The sec-
ond equality can be observed when we write the statements explicitly using equation
(4).

(3) This statement with a proof is available in [7, Lemma 2].

Proposition 2.1. Let t(z) be the polynomial as defined in (6). Then the following hold.

(1) t(x) is a self adjoint polynomial, i.e. t(x) = t(z).
(2) The associated matriz [t]r of t is an invertible and symmetric matriz.
(3) For any f € Ly, we have [f]T. = [to fot ]r.

Proof. (1) The statement is clear when the definition of ¢(z) in (6) is used in (5).
(2) Note that [t]r is the Gram matrix of the trace bilinear form («, ) € Fygn x Fgn —
Tryn /q(aB) € Fy with respect to the basis I', which is symmetric and non-degenerate.
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(3) Any f € L, can be written as f(x) = Z?:_ol a;z? for some g, 1, ..., 0p_1 € Fgn.
Therefore,

[f(@)]T

Il
—
Lngll

—
2
8
s}
[
3

- 7$q7i]r [T (by Lemma 2.1(1))

- ixq_i] [t(2)]r [asa]p [t (@)]r (by Lemma 2.1(3))

xq*i]r [asz]p [t ()] (by Lemma 2.1(2))

O

When we consider the algebra £,, as the ambient space instead of the algebra Fy~" we
observe that the equivalence in (1) for linear codes appears as follows: If C and C" are two
linear subspaces of £,, over Fy, then C and C" are equivalent if and only if there exist in £,

invertible polynomials g and A such that

C' = goCoh:={g(z)o f(x)oh(x) mod 29" —z: f(z)eC}, or

@) C' = goCoh:={g(z)o f(a:) oh(z) mod 29" —x: f(x) e C},

where the o operation denotes the composition, i.e., fi(z) o f2(z) = fi(f2(z)) mod 29" —
for f; € L£,. Note that o is associative on L£,,. Furthermore, the minimum distance d(C) is
indeed the minimum non-zero rank of the elements in C because C is closed under addition.

To present rank metric codes we usually prefer £, as the ambient space instead of Fy ",
since we make use of properties of linearized polynomials in general. In case we need the
matrix expansion, we use the notation [f]|r for f € L,.

I4+q+-+g"? f

Recall that the norm function Normgn, on Fyn over F, is given by a — « or

all o € Fgn. Now using the norm function we define generalized twisted Gabidulin codes.



6 KAMIL OTAL, FERRUH OZBUDAK AND WOLFGANG WILLEMS

Theorem 2.1. [11, 6] Let k,h,s € N and n € Fyn satisfyingl <k <n-—1, ged(n,s) =1 and
Normgn /4 (1) # (—1)", where ged denotes the greatest common divisor of integers. Then

s s(k— h sk
(8) Hnis(n, h) = {aor + ar2? + - + 27 RS naf " g, ..., 051 € Fgn}

is an MRD code of minimum distance n — k + 1.

Honks(n,h) is called a generalized twisted Gabidulin code. Note that h becomes useless
when 1 = 0. In this case the code is also called a generalized Gabidulin code and denoted by
Gn,k,s- Generalized Gabidulin codes were first considered in [4]. The codes G,, ;1 which form
a sub-family of the generalized Gabidulin codes were discovered earlier in [2, 3]. Usually they

are called Gabidulin codes.

2.2. Key Tools for Self-duality. Next we present some basic results, which we will use in
the following section while investigating self-duality of generalized twisted Gabidulin codes.
From now on, we fix the following assumptions and notations.

e v is a normal element of Fy» over [y,
o I'=(v,7%,... ,yqnil) is a normal basis of Fy» over I, constructed by ~,

q is odd ([7, Theorem 1] indicates that no self-dual MRD codes exist when ¢ is even),
e m = n and n is even (no self-dual codes exist when n is odd; recall also that dim(C) +
dim(Ct) = n?),

n = 4 (note that for n = 2, [7, Proposition 1] determines completely all MRD codes

which are equivalent to a self-dual code.).

We use the following theorem to characterize the codes which are properly equivalent to
self-dual codes.

Theorem 2.2. [7] Let C < Fy ™™ be a linear rank metric code. Then C is properly equiva-
lent to a self-dual code if and only if there are symmetric matrices A, B € Fy*" such that
det(A), det(B) € (IF;)2 and C+ = ACB.

The next lemma provides some essential information about linearized monomials azd € Ly,
where ov € Fgn and 0 <4 < n — 1. It is a slightly extended version of [7, Lemma 4].

Lemma 2.2. Let t(x) € L,, be the linearized polynomial defined in equation (6). Then the
following statements hold.
(1) det[t(x)]r ¢ (F})? and det[ax]r = Normgn 4(a) for all a € Fgn.
(2) [t(z) o (az)]r and [(az) ot~ (z)]r are symmetric for all o € Fyn.
(3) The following statements are equivalent.
(a) [t(z) o (27) o (ax)]p is symmetric,
(b) [(az) o (27) ot~ (z)]r is symmetric,
(c) eitherl=mn/2 and a € F;n/Q, orl =0 and a € F.

Proof. (1) The first statement is exactly [7, Lemma 4(v)], where also a proof is available.
The second statement is coming from the following correspondence. Let
e I = [Fyn, with the usual addition and multiplication of the field,
o [y ={az:aeFm} < Fplz], with the addition and composition of polynomials,
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o I3 = {[ax]r:aeFpm} < Fy*", with the addition and multiplication of matrices.
Then there is an isomorphism between any two of these three mathematical structures,
namely

F, o F o F3

a o ar < [azx]p.
Now, let g(y) = ¢+ gn—1y"" 1 +...+ g1y + go € F,4[y] be the characteristic polynomial
of [ax]r for some a € Fgn. Then the isomorphism between F and F3 implies that

g(y) is also the characteristic polynomial of a € Fy». Hence,
det[ax]r = (—1)"go = Normgn 4 ().

(2) The statement can be verified directly applying Proposition 2.1(3) to obtain the
transpose of each statement.

(3) The statement is exactly [7, Lemma 4(viii)] and a proof is available there.
O

Now we introduce another important result, which is a generalization of [7, Lemma 3(iv)].

Lemma 2.3. For linearized monomials az? we can determine trace([ax? |p) for all 0 <1 <

n—1 and a € Fyn as follows.

(1) trace([ax]r) = Trgn/q(a).
(2) trace([a:vq] )=0foralll<l<n-—1.

Note that Lemma 2.3 is a well-known fact and was remarked in [11], too. However,
especially the proof of Lemma 2.3(1) is not available neither in [7] nor in [11]. Hence we give

an explicit proof of the lemma below.

Proof. Let A = [ax]pr. Using normality of I' we obtain

n
q] 1 —1 qnfj qnfl - N qifjfl
Z A = ot T =Y Ay

||M:
hQ
Il
=
1=
=
~
S}

n—1

The left hand side of the last statement is clearly Tryn /q(a)*yq . The right hand side can

be rewritten by taking j from i to 7 + n — 1 and hence we obtain the following.

9)  Trgnjg(a (Z A; z) It (i Ai,z’+1> anﬁ +-F (i Ai,il) v
i—1 i=1

The statements of the lemma can be observed from equation (9) as follows.

(1) In equation (9), the coefficient of each 44 for all 0 < i < n — 1 is clearly in F,. Also
remember that I' is a basis of Fy» over F,. The uniqueness of the coefficients in F,

with respect to a fixed basis implies

Trygn /q(a) = Z A,
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which completes the first part of the proof.
(2) Note that az? = (ax) o (qu) and
!
[2%]r = [29)F = [6i-15)i<ijen = [Fictjhi<ij<n

which implies [az? ]p = Albi—1j]1<,i,j<n- Thus we have
. n
trace([oz? |r) = > Aj iy,
i=1

which is zero for 1 <1 < n — 1 according to the equation (9).

O

2.3. Equivalence Conditions and Automorphism Groups of Rank Metric Codes.
Now we introduce the proper automorphism group and full automorphism group of a rank
metric code. Let C be a linear code in L,, then the set of pairs (g(z),h(x)) in L, x L,
satisfying

(10) C =g(x)oCoh(x)
forms a group under the multiplication defined by

(11) (91(2), hi(2))(g2(2), ha(x)) = (g1(2) © g2(x), ha(x) © ha(2)).

This group is called the proper automorphism group of C and denoted by Aut® (0).
Similarly, the full automorphism group of C is defined as the group generated by the union
of Aut®)(C) and the set of [g(z), h(z)] couples satisfying

(12) C=g(x)ot Y (z)oCot(z)oh(z)
and denoted by Aut(C). We may determine this set up more explicitly as follows: Define

(9:h): f —gofoh.
[g.h] : fr>gotofot toh.

on the set of automorphisms of C < £,, and extend the multiplication in equation (11) from
Aut®)(C) to Aut(C) as

o [g1,h1][g2, ko] = (g1 ot o EO t=togot ™t ohy),

e [g1,h1](go, h2) = [grotohsot ™ togot™tohy],

* (91,h1)[g2, hal = [91 0 g2, ha © I ].
In that way we create the full automorphism group Aut(C) of a rank metric code C < L,,.

Therefore, taking only one fixed non-proper automorphism [g, h] (if any exist), we observe
that

Aut(C) = (Aut?(C) u {[g, h]})-

Also note that the index of Aut® (C) in Aut(C) is either one or two, since the square of a

non-proper automorphism is proper.
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3. SELF-DUALITY OF GENERALIZED TWISTED (GABIDULIN CODES

From now on we fix k = — > 1 since we investigate self-duality and assumed n > 4 as
mentioned at the beginning of Section 2.2.

The following lemma can be derived directly from Section 2 and Section 3 in [11] and [6,
Theorem 4.4].

Lemma 3.1. Two generalized twisted Gabidulin codes Hy n (i, h1) and Hy n s(n2, he) are
properly equivalent, i.e.,

Ho (1, 11) = f 0 Hpz (112, h2) 0

if and only if hy = hg, f(z) = az?, g(x) = Bx?" and n‘fi = ngathflﬁqwhl*‘l%ﬁ for some
a,BeFn and0<i<n-—1.

Corollary 3.1. The proper automorphism group of the generalized twisted Gabidulin code
H,z,s(n,h) is

ORI

AP (M, (0, 1)) = { (00 Bat) o, B e Tp, 0 <i<n—1, gt =pat"1prt T

Corollary 3.2. The proper automorphism group Aut® (gnk s) of a generalized Gabidulin
code Gy k.5 5

Aut® (G, 1s) = {(aacq B z) ro,BelFnm,0<i<n—1}.
The following lemma is a slight generalization of [7, Corollary 1] from Gy, 11 to Gy s

Lemma 3.2. Aut(Gp k) # Aut® (gnks) if k> 1.

Proof. On L, using

(g,h): f—gofoh,

(9.0 f > gotofot T oh.
we observe that

s(k—1)

Aut(Gp o) = Aut® (G o) o {117 b0 (@71,

The index [Aut(G, s ) : Aut® (Gn.s,k)] is obviously either 1 or 2. Suppose that the index
is 1, ie., Aut(G, sk) = Aut® (gnsk) Then there exist o, 8 € Fgn and 0 < i < n — 1 such
that

s(k—1)

(aa?’, B ") = [t71,t o (a7

However, for x € G, ;1 we have

(aa?’, 2" )(x) = ap?'x,
[t t0 @ )| (@) = a7

which are clearly not equal if & > 1. Hence the assumption is false, i.e., Aut(G,sx) #
Aut (gn s k’) U

)]

The following lemma is also available in [11, 6] and easy to prove directly by computation.
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Lemma 3.3. (1) The adjoint g/n,\%s of a generalized Gabidulin code gn7%,5 s properly
equivalent to itself.
(2) The adjoint Hn’%s(n, h) of a generalized twisted Gabidulin code Hn,%,s(n, h) is prop-

erly equivalent to Hn,gvs(n_‘fh, sg — h) when 1 is nonzero.

Now we can explicitly determine the dual of a generalized twisted Gabidulin code in terms

of another generalized twisted Gabidulin code.

Lemma 3.4. The dual code of a generalized twisted Gabidulin code Hm%s(n, h) is

n

s —h
) o Hpns(=1 7 ", —h) ot~

n
52

HEn (n,h) =to (2

n
n,s,s

n
sm—h

Proof. Let C' :=to (qu%) oMy n o(—n9

19

,—h)ot~L. Clearly

2 2
dim ¢ = % —n?— % — dim £, — dim Hy, 3 o(1,h) = dim Hy n (1, h).
Hence it is enough to show that C' < Hi%ﬁ(n,h). For any f € Hpz s(n,h) and g € C', we
have
fo(togot ™) =tz + 0127+ -+ Opgz?"
for some 6,01, ...,0,-1 € Fgn. Then,

trace[f o (togot )]r = trace[foz]r + trace[f1z]r + - -+ + trace[@n,lanfl]p

Here, the right hand side is exactly trace[fpz]r by Lemma 2.3(2). When we apply Lemma
2.3(1) and explicitly write 6y we observe that

trace[0ox]r = Trgn/q(00) = Trgn/q (noﬂhﬁqSk - nqnihaﬁqnihisw =0
for some « and 3 in Fyn. In conclusion we have
trace ([f]r[g]}) = trace[f o (togot )]r =0,

ie. C' c Hi’%vs(n, h). Thus the proof is completed. O

Lastly we provide a technical lemma that we multiply use in the proof of the main theorem.
Lemma 3.5. Let =3 mod 4 and n =2 mod 4. If ( € F}n satisfies
(13) ¢ = 1,
then Normgn 4 (C) is a square in Fy.

Proof. Let Norm n2/,(¢) = ¢, then i (—1)"2 = -1 # 1, ie., c ¢ Fn2 and hence
c ¢ F,. Additionally, equation (13) implies an/2 = —( and hence
n/2—1 n
Normgg(€) = CHH840"2 (L0) (g - (¢ ) = (120 = 2,

ie., ¢® € F, (whereas ¢ ¢ F,;). In other words, ¢? is a non-square in F,. On the other

n/2—1

hand, also —1 is a non-square in [, (since ¢ = 3 mod 4 and n = 2 mod 4). Therefore,

2

Normgn /4 (¢) = —c* is a square in F,. O

Now we give the main theorem of this paper.
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Theorem 3.1. Let n be a non-zero element in Fyn satisfying Normgn o(n) # 1. Then the
following hold.
(1) Case n=0: A generalized twisted Gabidulin code Hn,%vs(n, h) = gn%ﬁ is equivalent
to a self-dual MRD code if and only if n =2 mod 4 and ¢ =3 mod 4.
(2) Case n+#0: A generalized twisted Gabidulin code H, » s(n, h) is
e properly equivalent to a self-dual MRD code if and only if n =2 mod 4, ¢ =3
mod 4, h € {0,n/2} and Normgn ,(n) is a non-square in F.
e non-properly equivalent to a self-dual MRD code if and only if n = 2 mod 4,
q=3 mod 4, h e {0,n/2} and Normgn ,(n) is a square in F,.

Remark that the n = 0 case in Theorem 3.1 is a natural generalization of [7, Theorem 4].

4. PROOF OF THEOREM 3.1
In this section we prove Theorem 3.1 considering the cases separately.

4.1. Case 1 = 0. In this case the proof runs similar to that in [7].

(=) : Suppose that gn,g,s is equivalent to a self-dual MRD code C. Lemma 3.2 says that
gm% has non-proper automorphisms. Thus gn,%,s and C are properly equivalent without
loss of generality. Next, using Lemma 3.4 in Theorem 2.2 we write

Ha)o (@) 0Gun s ot (&) = al@) 0 Gy n s 0 b(a),

where [a]r, [b]r are symmetric and det[a]r, det[b]r € (F;)2. Now Corollary 3.2 implies that

s

NS

i

(14) azd = a tz)ot(x)o(z9?) and Bz =t Yz)ob ()

for some «, 8 € Fyn and 0 < i <n— 1. Then
(15) a(z) = t(x)o (297 Vo(atz) and b(z) = (8 9z)o (29) ot ().
Since a and b are symmetric, by Lemma 2.2(3) we deduce the following two possibilities:

(16) t=0and o € F;n/Q, or 1= g and B € F;H/Z

(Recall that s is odd since ged(s,n) = 1, and that ﬁ_qn/2 € F;n/z implies 8 € ]F;n/2 ). Fur-
thermore det[a]r, det[b]r € (F})?. So we can interpret both possibilities in (16) separately as
follows.

Subcase 1. Suppose that i = 0 and « € F;n/g. Then, on the first equation of (15) we
observe that
— Normgn/g(a1) = [a~ 2] is a square in Fy, since o € F;n/Q and by Lemma 2.2(1),
— det[t]r is a non-square in Fy, by Lemma 2.2(1), and
- det[:qu%] — (—1)2, by Lemma 2.1(1).
Therefore, to obtain that det[a]r is a square in F,;, we must have that (—1)

7 isa
non-square in [F7.

Subcase 2. Suppose that i = 5 and 8 € IF;,L/Q. Then, on the second equation of (15)
we observe similarly that

— Normn /q(ﬁ_qi) is a square in [,
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— det[t~!]r is a non-square in F,, and

- det[wq%] =(—1)=.
Therefore, to obtain that det[b]r is a square in F,, we must again have that (—1)

7 is
a non-square in Fy.

Consequently, we deduce that (—1)"2 ¢ (F?)? for both cases and this occurs only if n = 2

mod 4 and ¢ =3 mod 4.

(<) : Reverse steps of part (=) can be applied to finish the proof.

4.2. Case 11 # 0 and the Equivalence is Proper. In this case the proof runs similar to
the proof of the previous case but we use some additional properties, especially from Lemma
3.1

(=) : Suppose that 7—[”7%78(77, h) is properly equivalent to a self-dual MRD code C. Then
using Lemma 3.4 in Theorem 2.2 we obtain that

s 7 sB—h
to(xqj)oHnﬁs(_an 7_h)ot*1:aoﬂn’%’s(n’h)0b

K 2 7
for some invertible linearized polynomials a(z), b(x) € L, where [a]|r and [b|r are symmetric
matrices and det[a]r, det[b]r are squares in . Lemma 3.1 implies the equations

azt = a \(z)ot(x)o (a0F) and Bzt =t (z) o b} (x)

for some «, 8 € Fjn and 0 < ¢ < n — 1. Remark that this set of equations are exactly the
set of equations in (14). Applying similar arguments in Section 4.1 we obtain equation (15),
then the possibilities in (16) and hence the result that (—1)™2 is a non-square in F,, which

occurs only if

(17) n=2 mod4 and ¢=3 mod4
In addition, Lemma 3.1 also implies that h € {0, 5} and
(18) —1 = alage E e

We analyze the possibilities in (16) on equation (18) for h = 0 and h = n/2 separately as
follows.
e Subcase 1. Suppose that h = 0.
— Subcase 1.1. In case i = n/2 and € F;n/2, equation (18) implies that —1 =
i

— Subcase 1.2. Incasei =0and o € IF;,L/Q, we observe from the equations in (15)

= 1, a contradiction.

and Lemma 2.2(1) that Normgn /,(3) is a non-square in IF; since det([b]r) is a

square in [F,. On the other hand, equation (18) reduces to —1 = ﬁqn/Q*InI*qn/Q.

For ¢ = 8/n we get

an/2_1 - _1
Considering (17) and using Lemma 3.5 we deduce that Normgn ,(¢) is a square
in F,. Combining both we see that Normn (1) = W is a non-square
& & q"/a\l Normqn/q(q) 1

in F,.
e Subcase 2. Suppose that h = n/2.
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— Subcase 2.1. In case i = 0 and « € F;n/z, equation (18) implies that —1 =
=" = 1, a contradiction.

— Subcase 2.2. In case i = n/2 and [ € F;n/Q, we observe from the equations in
(15) and Lemma 2.2(1) that Normgn,() is a non-square in F,. On the other

n/277qn/2_1

hand, equation (18) reduces to —1 = a!~4 . Taking ¢ = a/n we get

an/Qfl _ _1

again. Considering (17) and using Lemma 3.5 we deduce that Normgn,(C) is

Normgn /4 ()

a square in ;. Combining both we see that Normgn (1) = Norty,(0) is a
qm/q

non-square in Fg.

(<) : Reverse steps of part (=) can be applied to complete the proof.

4.3. Case 11 # 0 and the Equivalence is Non-proper. In this case our proof is similar
to the case in Section 4.2 with some differences.
(=) : Suppose that Hn,%,s(n, h) is non-properly equivalent to a self-dual MRD code C.
Then #H and C are properly equivalent. Using Lemma 3.3 in Theorem 2.2 we get
HE (77_‘]%,8ﬁ — h) =aoH,n, (n_qih,sg — h) ob

n, 5,8 2 19

) 2 2
and according to Lemma 3.4 we obtain
to (azqu> oHpyn s (—77*‘1577%, h — sﬁ> ot Tl =aoM,n, <rfq_h,sﬁ — h) ob
DR 2 DR 2
for some invertible linearized polynomials a(z), b(x) € L,,, where [a]r and [b]r are symmetric
matrices and det[a]r, det[b]r are squares in ;. Then by Lemma 3.1 we obtain that
az? = a M(z)ot(z)o(z?) and Bzt = tHx) o b ()
for some «, § € Fyn and 0 < 7 < n—1, similarly. Remark that this set of equations are exactly
the set of equations in (14). Applying similar arguments in Section 4.1 we obtain equation
(15), then the possibilities in (16) and hence the result that (—1)"? is a non-square in F,,
which occurs only if the conditions in (17) hold.
In addition, Lemma 3.1 also implies that h € {0, 5} and
(19) 1=l
We analyze the possibilities in (16) on equation (19) for A = 0 and h = n/2 separately as
follows.
e Subase 1. Suppose that h = 0.
— Subcase 1.1. In case i = n/2 and S € F;R/Q we see by equation (15) that
Normgn 4 (@) is a non-square in F,. Furthermore equation (19) leads to

a1 = 1,

Using Lemma 3.5 we deduce that Normgn /,(c) is a square in Fy, contradiction.
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— Subcase 1.2. Incase i =0 and a € IF;MQ, equation (19) reduces to

(20) =,

since a"*~1 = 1. By Lemma 3.5 we deduce that Normgn 4(7) is a square in F,.
e Subcase 2. Suppose that h = n/2.
— Subcase 2.1. In case ¢ = 0 and « € IF;MQ we see by equation (15) that
Normgn /(3) is a non-square in F,. However, equation (19) reduces to

gItt = 1,

That is, by Lemma 3.5, Normgn . () is a square in g, contradiction.
— Subcase 2.2. In case i = n/2 and 8 € ]F:In/Q, equation (19) leads to equation

(20), which again means that Normg. (7)) is a square in .

(<) : Reverse steps of part (=) complete the proof.
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