Detecting and Reconstructing Centrally Symmetric Sets from the Autocorrelation: Two Discrete Cases

Gennadiy Averkov*

February 11, 2009

Abstract

Let A be a finite, centrally symmetric set in \mathbb{R}^d, $d \geq 1$, and let B be a set homometric to A, that is, for all $x \in \mathbb{R}^d$ the sets $A \cap (A + x)$ and $B \cap (B + x)$ have equal cardinalities. We show that B is a translate of A. As a consequence, an analogous statement is obtained for bodies which are unions of lattice cubes. We notice that homometric sets are relevant in several research areas including image analysis, geometric probability, and X-ray crystallography.

2000 Mathematics Subject Classification. Primary: 52C99; Secondary: 05B10, 05B50, 52C23,

Key words and phrases. autocorrelation; central symmetry; covariogram; discrete tomography; reconstruction

1 Introduction

The problem of reconstructing a given object (e.g., set, function, or distribution) from the autocorrelation is relevant in several research areas, such as geometric tomography [Gar06, p. 378], [HK07], image analysis [Ser84, Ch. IX], geometric probability [Mat75, §4.3], phase retrieval [Hur89], and X-ray crystallography [Jan97]. Usually it can be shown that a centrally symmetric object can be reconstructed from the autocorrelation within a given class of centrally symmetric objects. A more general problem is concerned with detection of central symmetry within a class of objects which are not all centrally symmetric and subsequent reconstruction of a centrally symmetric object. The purpose of this note is to study the above problem for finite sets and for unions of lattice cubes.

Let A be a finite subset of \mathbb{R}^d, $d \geq 1$. Then the function $g_A(x) := |A \cap (A + x)|$, where $x \in \mathbb{R}^d$ and $| \cdot |$ stands for cardinality, is called the autocorrelation (or discrete covariogram) of A. Clearly, g_A is invariant with respect to reflections and translations of A. In general it is not possible to determine A from g_A, up to translations and reflections, even under extra (regularity) assumptions on A such as (discrete versions of) convexity of A. Fig. 1 depicts two convex lattices sets with equal autocorrelation, where the example is borrowed from [GGZ05, p. 402].

*Address: Faculty of Mathematics, University of Magdeburg, D-39106 Magdeburg, Germany. E-mail: gennadiy.averkov@googlemail.com
In contrast to the above remark, we can determine arbitrary finite, centrally symmetric sets within the class of all finite sets.

Theorem 1. Let A be a finite, centrally symmetric set in \mathbb{R}^d, $d \geq 1$, and let B be a finite set with $g_A = g_B$. Then B is a translate of A.

For a compact set K in \mathbb{R}^d with non-empty interior the autocorrelation (or continuous covariogram) of K is the function $g_K(x) = \lambda_d(K \cap (K+x))$, where λ_d is the d-dimensional Lebesgue measure. Let us call K a lattice body if $K = A + [0,1]^d$ for some finite set A in \mathbb{Z}^d. (Notice that lattice bodies are generalizations of polyominoes.) Positive results on determination of convex sets from autocorrelation have recently been obtained in [AB] and [Bia] (see also the references therein). However, also in the case of compact sets with non-empty interior in general it is not possible to determine a set from its autocorrelation, up to translations and reflections. In fact, the sets $K = A + [0,1]^2$ and $H = B + [0,1]^2$ with A and B as in Fig. 1 do not coincide, up to translations and reflections, and satisfy $g_K = g_H$ (see [GGZ05] for more details). As a consequence of Theorem 1 we show that a centrally symmetric lattice body K can be determined within the class of all lattice bodies by g_K.

Corollary 2. Let K and H be two lattice bodies with $g_K = g_H$ and let K be centrally symmetric. Then H is a translate of K.

Following referee’s suggestion, we notice that the results of this paper were motivated by Proposition 4.4 and Corollary 4.5 in [GGZ05], which show that, within the class of centrally symmetric sets, X can be recovered from g_X, up to translations, for the case when X is finite and for the case when X is a compact set in \mathbb{R}^d coinciding with the closure of its interior. In fact, Proposition 3 below gives a common generalization of both of these cases in terms of distributions (see also [KST95, Proposition 3.3] for an analogous statement for $d = 1$ and [Höhr03] for basic information on distributions). A distribution f on \mathbb{R}^d is said to be centrally symmetric if $f \circ R = f$ for some point reflection R in \mathbb{R}^d and non-negative if f takes non-negative values on non-negative test functions. We remark that, essentially by the Riesz representation theorem (see [Tay06, Chapter 13]), non-negative distributions are in one-to-one correspondence with (non-negative) Radon measures. The Fourier transform of f is denoted by \hat{f}.
Proposition 3. Let f and h be non-negative, centrally symmetric distributions on \mathbb{R}^d having compact supports and satisfying $|\hat{f}| = |\hat{h}|$. Then $f \circ T = h$ for an appropriate translation T.

Motivated by the results presented above, we ask the following question. Let K and H be compact sets equal to the closure of their interior and let K be centrally symmetric. Does the condition $g_K = g_H$ imply that K and H coincide, up to translations? In this respect we notice that the proof idea of Proposition 3 does not seem to be directly extendable to the case when h is not assumed to be centrally symmetric. On the other hand, by considering various homothetic copies of lattice bodies, Corollary 2 provides a positive answer to the above question for a class of bodies which is “arbitrarily dense” in the class of all compact sets.

2 The proofs

By o we denote the zero-vector in \mathbb{R}^d. The support is abbreviated as supp. By $[a, b]$ we denote the line segment joining two points a and b in \mathbb{R}^d. We remark that for a finite set A in \mathbb{R}^d and $x \in \mathbb{R}^d$, $g_A(x)$ is precisely the number of pairs (x_0, x_1) with $x_0, x_1 \in A$ and $x_1 - x_0 = x$.

Proof of Theorem 1. We start with the case $d = 1$. Let us exclude the trivial situation $|A| \leq 1$. Let $g := g_A = g_B$ and let $y > 0$ be the maximal value in supp g. After replacing A and B by appropriate translates we may assume that both A and B are contained in $[0, y]$. We have $[y/2, y] \cap A = \{y_1, \ldots, y_m\}$ with $m \in \mathbb{N}$ and appropriate $y_1 < \ldots < y_m = y$. By construction, 0 and $y = y_m$ belong to both A and B. We show by (the reverse) induction that the sets $A_k := ([0, y - y_k] \cup [y_k, y]) \cap A$ and $B_k := ([0, y - y_k] \cup [y_k, y]) \cap B$ coincide for every $k = 1, \ldots, m$. For $k = m$ that was noticed above. Now assume that A_{k+1} and B_{k+1} coincide, where $k = 1, \ldots, m - 1$. Then every x with $y_k < x < y_{k+1}$ does not belong to B. In fact, assume the contrary and fix x with $y_k < x < y_{k+1}$ and $x \in B$. Then all pairs (x_0, x_1) with $x_0, x_1 \in A$ and $x_1 - x_0 = x$ satisfy $x_0, x_1 \in A_{k+1} = B_{k+1}$. Furthermore, B possesses at least one further pair (x_0, x_1) with $x_0, x_1 \in B$ and $x_1 - x_0 = x$, since we may set $x_0 = 0$ and $x_1 = x$. Hence $g_B(x) > g_A(x)$, a contradiction. Analogously we can show that every x with $y < y_{k+1} < x < y_k$ does not belong to B. Next we show that \{y_k, y - y_k\} is a subset of B. We have

$$g_A(y_k) = |\{(x_0, x_1) : x_0, x_1 \in A, x_1 - x_0 = y_k\}|$$
$$= |\{(x_0, x_1) : x_0, x_1 \in A_{k+1}, x_1 - x_0 = y_k\}| + |\{(0, y_k), (y - y_k, y)\}|$$
$$= |\{(x_0, x_1) : x_0, x_1 \in B_{k+1}, x_1 - x_0 = y_k\}| + |\{(0, y_k), (y - y_k, y)\}|$$
$$\geq |\{(x_0, x_1) : x_0, x_1 \in B_{k+1}, x_1 - x_0 = y_k\}| + |\{(0, y_k), (y - y_k, y)\} \cap (B \times B)|$$
$$= g_B(y_k) = g_A(y_k).$$

Thus, $A_{k+1} = B_{k+1}$ implies $A_k = B_k$ and we obtain the equality $A_1 = B_1$. Using analogous arguments we show that no x with $y - y_1 < x < y_1$ belongs to B. Summarizing we get $A = B$.

For an arbitrary $d \in \mathbb{N}$, we argue by induction on d. For $d = 1$, the statement was shown above. Assume that the statement of the theorem is valid for dimension $d - 1$ with $d \geq 2$. Let A and B be the sets satisfying the assumptions of the theorem. Without loss
of generality let the center of mass of both A and B be the origin. For a unit vector u in \mathbb{R}^d we denote by H_u the plane through the origin orthogonal to u, and by T_u the operator of orthogonal projection onto H_u. Let U be the set of all unit vectors u in \mathbb{R}^d such that u is not parallel to any vector $x_1 - x_0$ with $x_0 \neq x_1$ and $x_0, x_1 \in \text{supp} \ g$. For every $u \in U$ the mapping T_u is injective on the sets A, B, and $\text{supp} \ g$. Clearly, U is a relatively open subset of the unit sphere. For all $u \in U$ we obviously have $T_u(\text{supp} \ g) = \text{supp} \ g_{T_uA} = \text{supp} \ g_{T_uB}$. Furthermore, for $u \in U$ and $x \in \text{supp} \ g$

$$g_{T_uB}(T_u x) = \left\{ (T_u x_0, T_u x_1) : x_0, x_1 \in B, T_u x_1 - T_u x_0 = T_u x \right\}$$

$$= \left\{ (T_u x_0, T_u x_1) : x_0, x_1 \in B, x_1 - x_0 = x \right\}$$

(by injectivity of T_u on $\text{supp} \ g$)

$$= \left\{ (x_0, x_1) : x_0, x_1 \in B, x_1 - x_0 = x \right\}$$

(by injectivity of T_u on B)

$$= g_B(x) = g_A(x) = g_{T_uA}(T_u x).$$

Thus, $g_{T_uA}(x) = g_{T_uB}(x)$ for all $u \in U$ and $x \in H_u$. Applying the induction assumption to T_uA and T_uB and taking into account that for all $u \in U$ the origin is the center of mass of T_uA and T_uB, we get $T_uA = T_uB$ for all $u \in U$. Then, in view of the result from [Hep56], stating that a finitely supported measure on k points can be determined by $k + 1$ X-ray pictures in mutually non-parallel directions, we obtain $A = B$. \hfill \square

In the proofs of Corollary 2 and Proposition 3 we use elements of the theory of distributions. As usual δ_a denotes the delta-function concentrated at a. For a finite set A in \mathbb{R}^d we define $\delta_A := \sum_{a \in A} \delta_a$. The convolution is denoted by \ast. The characteristic function of a set K is denoted by 1_K. If K is a compact set with non-empty interior we easily get the equality $g_K = 1_K \ast 1_{-K}$. Analogously, for a finite set A there is a one-to-one correspondence between g_A and $\delta_A \ast \delta_{-A}$ in view of $\sum_{a \in \text{supp} \ g_A} g_A(a) \delta_a = \delta_A \ast \delta_{-A}$.

Proof of Corollary 2. Let us represent K and H in the form $K = A + C$ and $H = B + C$, where A, B are finite, $C = [0, 1]^d$, and A is centrally symmetric. It is easy to check that $1_K = \delta_A \ast 1_C$. Hence $g_K = \delta_A \ast \delta_{-A} \ast 1_C \ast 1_{-C} = \delta_A \ast \delta_{-A} \ast g_C$. Analogously, $g_H = \delta_B \ast \delta_{-B} \ast g_C$.

Applying the Fourier transform to $g_K = g_H$ we obtain $\hat{g}_K = |\hat{\delta}_A|^2 \hat{g}_C = |\hat{\delta}_B|^2 \hat{g}_C = \hat{g}_H$. It is well known that the Fourier transform of a distribution with compact support is an analytic function. Choose an open subset U of \mathbb{R}^d on which the analytic function \hat{g}_C does not vanish. It follows that $|\hat{\delta}_A|^2 = |\hat{\delta}_B|^2$ in U. By analyticity of $|\hat{\delta}_A|^2$, we get $|\hat{\delta}_A|^2 = |\hat{\delta}_B|^2$ in the whole \mathbb{R}^d. Applying the reverse Fourier transform to the latter relation, we arrive at $\delta_A \ast \delta_{-A} = \delta_B \ast \delta_{-B}$. Hence $g_A = g_B$, and in view of Theorem 1, B is a translate of A. It follows that H is a translate of K. \hfill \square

Proof of Proposition 3. Essentially, we may directly extend the short proof of Proposition 4.4 from [GGZ05]. Without loss of generality let $f = f \circ R$ and $h = h \circ R$, where R is the reflection in the origin. Taking into account the above symmetry relations, the equality $|\hat{f}| = |\hat{h}|$ yields $|\hat{f}|^2 = (\hat{h})^2$. Hence $\hat{f}(x) = \pm \hat{h}(x)$ for all $x \in \mathbb{R}^d$ with the sign, a priori, depending on x. However, since both \hat{f} and \hat{h} are analytic, they are uniquely determined by their values on a set with a limit point, so that we obtain $\hat{f} = \pm \hat{h}$. Applying the inverse Fourier transform and using non-negativity of f and h, we get the assertion. \hfill \square
References

