5-designs related to binary extremal self-dual codes of length $24 m$

Javier de la Cruz and Wolfgang Willems
Otto-von-Guericke Universität, Magdeburg, Germany
Universidad del Norte, Barranquilla, Colombia

Abstract

We prove that the binary code C of length 120 related to a self-orthogonal $5-(120,24,8855)$ design is self-dual and has minimum distance $d=24$ (i.e. C is extremal) or $d=16$.

Keywords: Extremal self-dual codes, 5-designs

1 Introduction

A t - (v, k, λ) design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, shortly a t-design, is a set \mathcal{P} of v points together with a collection \mathcal{B} of k-subsets B of \mathcal{P} (called blocks) such that every t distinct points are together incident with exactly λ blocks. The design is called self-orthogonal if

$$
\left|B \cap B^{\prime}\right| \equiv k \bmod 2
$$

for all blocks $B, B^{\prime} \in \mathcal{B}$.
Let C be a binary extremal self-dual code of length $n=24 m$. According to Mallows and Sloane [12], the minimum distance of an extremal code of length $24 m$ satisfies $d=4 m+4$. We put $\mathcal{P}=\{1, \ldots, 24 m\}$ and define the blocks $B \in \mathcal{B}$ as supports of codewords of minimal weight. Thus the block size equals $4 m+4$. Due to Assmus and Mattson [1], $\mathcal{D}_{C}=(\mathcal{P}, \mathcal{B})$ forms a self-orthogonal $5-(24 m, 4 m+4, \lambda)$ design.

If A_{d} denotes the number of codewords of minimal weight a double counting argument shows that

$$
\binom{n}{5} \lambda=A_{d}\binom{d}{5} .
$$

Since, according to [12],

$$
A_{d}=\frac{\binom{n}{5}\binom{(5 m-2}{m-1}}{\binom{d}{5}}
$$

we obtain

$$
\lambda=\binom{5 m-2}{m-1} .
$$

Thus a binary extremal self-dual code of length $n=24 m$ yields a self-orthogonal

$$
5-\left(24 m, 4 m+4,\binom{5 m-2}{m-1}\right)
$$

design.
Conversely, suppose that \mathcal{D} is a self-orthogonal $5-\left(24 m, 4 m+4,\binom{5 m-2}{m-1}\right)$ design. The related binary code $C(\mathcal{D})$ is defined as the \mathbb{F}_{2}-linear span of the rows of the block-point incidence matrix of \mathcal{D}. Clearly, $C(\mathcal{D})$ is self-orthogonal since \mathcal{D} is self-orthogonal.

In order to prove that $C(\mathcal{D})$ is self-dual we may proceed as follows. Let $c^{\perp} \in C(\mathcal{D})^{\perp}$ with $\mathrm{wt}\left(c^{\perp}\right)=w$ and let S denote the support of c^{\perp}. Hence $|S|=w$. If n_{i} denotes the number of blocks intersecting S in exactly i points (the n_{i} are usually called intersection numbers) and

$$
\begin{equation*}
\lambda_{j}=\lambda \frac{\binom{24 m-j}{5-j}}{\binom{4 m+4-j}{5-j}} \tag{1}
\end{equation*}
$$

then we have the Mendelsohn equations

$$
\begin{equation*}
\sum_{i=0}^{\left\lfloor\frac{w}{2}\right\rfloor}\binom{2 i}{j} n_{2 i}=\lambda_{j}\binom{w}{j} \quad(j=0,1, \ldots, 5) \tag{2}
\end{equation*}
$$

(see [13] or ([3], Satz 2.1.1). In case we are able to prove that the system (2) of linear equations has nonnegative integer solutions $n_{2 i} \in \mathbb{N}_{0}$ only if $4 \mid w$ then $C(\mathcal{D})^{\perp}$ is doublyeven which implies

$$
C(\mathcal{D})^{\perp} \subseteq\left(C(\mathcal{D})^{\perp}\right)^{\perp}=C(\mathcal{D})
$$

Hence $C(\mathcal{D})$ is self-dual since $C(\mathcal{D}) \subseteq C(\mathcal{D})^{\perp}$.
This approach works properly for $m=1, \ldots, 25$ unless $m=7,13,14,15$ and 23 . In the exceptional cases the method fails since there might be solutions $n_{2 i} \in \mathbb{N}_{0}$ of (2) for all $w \equiv 2 \bmod 4$.

Remark 1 Note that for $m=1$ there is exactly one binary extremal self-dual code, namely the $[24,12,8]$ extended Golay code and exactly one $5-(24,8,1)$ design, a Steiner system, where the related code is the binary extended Golay code (see ([14], Theorem $5)$ and ([2], Theorem 8.6.2)). For $m=2$ there is again exactly one binary extremal self-dual code, namely the binary extended quadratic residue code [10] and exactly one self-orthogonal $5-(48,12,8)$ design ([9], Theorem 1.1), where the related code is the binary extended quadratic residue code of length 48.

In case $m=3$ and $m=4$ we do not know about the existence neither of binary extremal self-dual codes of length 72 or 96 nor of self-orthogonal $5-(72,16,78)$ or $5-(96,20,816)$ designs \mathcal{D}. However, according to [8] and [7], the related codes $C(\mathcal{D})$ of the putative designs are extremal self-dual in both cases.

2 The case $m=5$

Unfortunately, for $m=5$, we are not able to prove that the related code of the putative 5 -design is extremal. More precisely, we have

Theorem Let \mathcal{D} be a self-orthogonal $5-(120,24,8855)$ design. Then $C(\mathcal{D})=C(\mathcal{D})^{\perp}$ with minimum distance $d=16$ or $d=24$.
Proof: Let \mathcal{D} be a self-orthogonal $5-(120,24,8855)$ design. According to (1) one easily computes $\lambda_{0}=39703755, \lambda_{1}=7940751, \lambda_{2}=1534767, \lambda_{3}=286143, \lambda_{4}=51359$ and $\lambda=\lambda_{5}=8855$. Let $C=C(\mathcal{D})$. Clearly $C \subseteq C^{\perp}$ since \mathcal{D} is self-orthogonal.

Next let $c^{\perp} \in C^{\perp}$ with $\operatorname{wt}\left(c^{\perp}\right)=w>0$. Since $n_{2 i}=0$ for $2 i>24$ the system (2) of equations may be written as

$$
\begin{equation*}
x A=b \tag{3}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
x=\left(n_{0}, n_{2}, n_{4}, n_{6}, n_{8}, n_{10}, n_{12}, n_{14}, n_{16}, n_{18}, n_{20}, n_{22}, n_{24}\right), \\
b=\left(\begin{array}{lll}
\lambda_{0}, & \lambda_{1}\binom{w}{1} & \lambda_{2}\binom{w}{2}
\end{array} \lambda_{3}\binom{w}{3}, \quad \lambda_{4}\binom{w}{4}, \quad \lambda_{5}\binom{w}{5}\right.
\end{array}\right)
$$

and

$$
A=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 \\
1 & 4 & 6 & 4 & 1 & 0 \\
1 & 6 & 15 & 20 & 15 & 6 \\
1 & 8 & 28 & 56 & 70 & 56 \\
1 & 10 & 45 & 120 & 210 & 252 \\
1 & 12 & 66 & 220 & 495 & 792 \\
1 & 14 & 91 & 364 & 1001 & 2002 \\
1 & 16 & 120 & 560 & 1820 & 4368 \\
1 & 18 & 153 & 816 & 3060 & 8568 \\
1 & 20 & 190 & 1140 & 4845 & 15504 \\
1 & 22 & 231 & 1540 & 7315 & 26334 \\
1 & 24 & 276 & 2024 & 10626 & 42504
\end{array}\right) .
$$

Solving the system (3) of equations we find

$$
n_{10}=\beta_{10}-6 n_{12}-21 n_{14}-56 n_{16}-126 n_{18}-252 n_{20}-462 n_{22}-792 n_{24},
$$

where

$$
\beta_{10}=\frac{1}{32 \cdot 8 \cdot 3}\left(1771 w^{5}-120428 w^{4}+3253580 w^{3}-41174416 w^{2}+204795264 w\right) .
$$

One easily checks that $\beta_{10} \notin \mathbb{Z}$ if $w \not \equiv 0 \bmod 4$. Therefore $w \equiv 0 \bmod 4$ which shows that C^{\perp} is doubly-even. In particular, C^{\perp} is self-orthogonal which proves that C is self-dual.

Finally, in order to compute the minimum distance d of C let $c \in C^{\perp}=C$ be of minimum weight $\mathrm{wt}(c)=w=d$. According to (2) we have

$$
2 \sum_{i=0}^{\left\lfloor\frac{w}{2}\right\rfloor}\binom{2 i}{2} n_{2 i}-\sum_{i=0}^{\left\lfloor\frac{w}{2}\right\rfloor} 2 i n_{2 i}=2 \lambda_{2}\binom{w}{2}-\lambda_{1} w,
$$

hence

$$
\sum_{i=0}^{\left\lfloor\frac{w}{2}\right\rfloor} 2 i(2 i-2) n_{2 i}=w\left((w-1) \lambda_{2}-\lambda_{1}\right) .
$$

Since $2 i(2 i-2) n_{2 i} \geq 0$ for $i=0, \ldots,\left\lfloor\frac{w}{2}\right\rfloor$ we obtain $w \geq \frac{\lambda_{1}+\lambda_{2}}{\lambda_{2}}>6$. Therefore the minimum distance d satisfies $d \geq 8$.

Using a computer algebra system we see that for $w=8$ and $w=12$ the system (3) of equations has no solution consisting of nonnegative integers. Thus we have $d \geq 16$. In contrast to $w=8$ and $w=12$ there are nonnegative integer solutions for $w=16$ and $w=20$, for instance

$$
x=(1599377,17248920,16427320,4325776,66690,35672,0,0,0,0,0,0)
$$

and

$$
x=(574140,10214100,18892755,8752800,1200300,69660,0,0,0,0,0,0),
$$

respectively. We claim that $d=20$ can not occur which finishes the proof.
By Gleason's theorem [6], the homogenous weight enumerator $W_{C}(x, y)$ is given by

$$
W_{C}(x, y)=\sum_{i=0}^{5} a_{i}\left(x^{8}+14 x^{4} y^{4}+y^{8}\right)^{15-3 i}\left(x^{4} y^{4}\left(x^{4}-y^{4}\right)^{4}\right)^{i},
$$

where $a_{i} \in \mathbb{Z}$ for $i=0, \ldots, 5$. Thus

$$
\begin{aligned}
W_{C}(1, y) & =a_{0}+\left(210 a_{0}+a_{1}\right) y^{4}+\left(20595 a_{0}+164 a_{1}+a_{2}\right) y^{8}+\ldots \\
& =A_{0}+A_{20} y^{20}+A_{24} y^{24}+\ldots,
\end{aligned}
$$

where A_{i} denotes the number of codewords of weight i. In particular we have

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
210 & 1 & 0 & 0 & 0 \\
20595 & 164 & 1 & 0 & 0 \\
1251460 & 12282 & 118 & 1 & 0 \\
52705485 & 554740 & 6085 & 72 & 1
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The unique solution of this system of equations is

$$
\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,-20,13845,-305950,1571490) .
$$

Therefore $A_{20}=492372+a_{5}>0$ and $A_{24}=29856315-20 a_{5}$. Since $-a_{5}<492372$ we get

$$
A_{24}=29856315-20 a_{5}<29856315+9847440=39703755
$$

which contradicts the fact that the incidence matrix of the design \mathcal{D} has 39703755 row vectors of weight 24 .

In the proof we used only the Mendelsohn equations from design theory. There are other equations like the Köhler equations or higher intersection numbers (see [3]). However neither of them lead to a contradiction in case $d=16$.

3 Automorphism groups

It is well-known that the automorphism group of the binary extended Golay code coincides with the automorphism group of its related $5-(24,8,1)$ design; it is the Mathieu group M_{24}. The same happens with the binary extended quadratic residue code of length 48 and its related self-orthogonal $5-(48,12,8)$ design. The group is $\operatorname{PSL}(2,47)$. In general we have

Proposition 2 Let C be a binary extremal self-dual $[24 m, 12 m, 4 m+4]$ code with related self-orthogonal $5-\left(24 m, 4 m+4,\binom{5 m-2}{m-1}\right)$ design \mathcal{D}. If $C(\mathcal{D})^{\perp}=C(\mathcal{D})$ then

$$
\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})
$$

Proof: The condition $C(\mathcal{D})^{\perp}=C(\mathcal{D})$ implies in particular that C is generated by the set $S=\left\{v_{1}, \ldots, v_{s}\right\}$ of all codewords of minimum weight $w=d=4 m+4$.
Let $\sigma \in \operatorname{Aut}(\mathcal{D})$. For $c=\sum_{i=1}^{s} \alpha_{i} v_{i} \in C$ we put $\sigma(c)=\sum_{i=1}^{s} \alpha_{i} \sigma\left(v_{i}\right)$. Note that this is well defined since σ permutes the coordinates $\{1, \ldots, 24 m\}$. Clearly, $\sigma\left(v_{i}\right) \in S \subseteq C$ for all i, hence $\sigma(c) \in C$. This proves that $\sigma \in \operatorname{Aut}(C)$.
Conversely, suppose that $\sigma \in \operatorname{Aut}(C)$. Since σ acts as a permutation on S it induces a permutation on the blocks which shows that $\sigma \in \operatorname{Aut}(\mathcal{D})$.

Remarks 3 a) By the Theorem and the computations we mentioned in the previous sections we have $C(\mathcal{D})^{\perp}=C(\mathcal{D})$ for all self-orthogonal $5-\left(24 m, 4 m+4,\binom{5 m-2}{m-1}\right)$ designs \mathcal{D} with $m=1, \ldots, 25$ unless $m=7,13,14,15,23$. Thus for these m the automorphism group of a binary extremal self-dual $[24 m, 12 m, 4 m+4]$ code C is equal to the automorphism group of its related design \mathcal{D}.
b) Since $C(\mathcal{D})$ is extremal for $m=3$ and $m=4$ the automorphism group of a selforthogonal $5-(72,16,78)$ or $5-(96,20,816)$ design equals the automorphism group of the related extremal self-dual code. Thus, according to the main theorem in [4], the automorphism group of a putative self-orthogonal $5-(72,16,78)$ design is solvable of order less or equal to 36 . Information on the automorphism group of a self-orthogonal 5 - $(96,20,816)$ design can be taken from [5].

4 Questions

Let \mathcal{D} be a self-orthogonal $5-\left(24 m, 4 m+4,\binom{5 m-2}{m-1}\right)$ design and let $C(\mathcal{D})$ denote its related code as defined in the introduction. Due to the results in the literature and the previous sections we may ask.
Question $1 \quad$ Do we always have $C(\mathcal{D})^{\perp}=C(\mathcal{D})$?
Question 2 Is $C(\mathcal{D})$ always an extremal self-dual $[24 m, 12 m, 4 m+4]$ code?
Note, that an affirmative answer to the question 1 implies that the automorphism group of an extremal self-dual code of length $24 m$ is equal to the automorphism group of its related 5 -design. An affirmative answer of question 2 says that the existence of an extremal self-dual [$24 m, 12 m, 4 m+4$] code is equivalent to the existence of a self-orthogonal $5-\left(24 m, 4 m+4,\binom{5 m-2}{m-1}\right)$ design.

References

[1] E.F. Assmus, Jr. and H.F. Mattson Jr., New 5-designs. J. Combin. Theory 6 (1969), 122-151.
[2] E.F. Assmus, Jr. and J.D. Key, Designs and their Codes. Cambridge University Press 1992
[3] A. Betten, Schnittzahlen von Designs, Bayreuther Mathematische Schriften, Heft 58, 2000.
[4] E.A. O'Brien and W. Willems, On the automorphism group of a binary self-dual doubly-even $[72,36,16]$ code. To appear IEEE Trans. Inform. Theory.
[5] J. de la Cruz and W. Willems, On extremal self-dual codes of length 96. To appear IEEE Trans. Inform. Theory.
[6] A.M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, in Actes Congrès Internat. Math. 3 (1970), 211-215.
[7] M. Harada, Remark on a 5-design related ton a putative extremal doubly-even selfdual $[96,48,20]$ code. Designs, Codes and Cryptography 37 (2005), 355-358.
[8] M. Harada, M. Kitazume and A. Munemasa, On a 5-design related to an extremal doubly-even self-dual code of length 72. J. Combin. Theory, Series A 107 (2004), 143-146.
[9] M. Harada, A. Munemasa and V.D. Tonchev, A characterization of designs related to an extremal doubly-even self-dual code of length 48. Annals of Combinatorics 5 (2005), 189-198.
[10] S.K. Houghten, C.W.H. Lam, L.H. Thiel and J.A. Parker, The extended quadratic residue code is the only $(48,24,12)$ self-dual doubly-even code. IEEE Trans. Inform. Theory 49 (2003), 53-59.
[11] J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes. NorthHolland, Amsterdam 1977.
[12] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes. Inform. and Control 22 (1973), 188-200.
[13] N.S. Mendelsohn, Intersection numbers of t-designs. In: Studies in Pure Mathematics (presented to Richard Rado), Academic Press, London 1971, 145-150.
[14] V. Pless, On the uniqueness of the Golay codes. J. Comb. Theory 5 (1968), 215-228.

