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Abstract

We prove that the binary code C of length 120 related to a self-orthogonal 5-(120, 24, 8855)
design is self-dual and has minimum distance d = 24 (i.e. C is extremal) or d = 16.
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1 Introduction

A t-(v,k,\) design D = (P, B), shortly a t-design, is a set P of v points together with
a collection B of k-subsets B of P (called blocks) such that every ¢ distinct points are
together incident with exactly A blocks. The design is called self-orthogonal if

|BN B'| =k mod 2

for all blocks B, B € B.

Let C be a binary extremal self-dual code of length n = 24m. According to Mallows and
Sloane [12], the minimum distance of an extremal code of length 24m satisfies d = 4m + 4.
We put P = {1,...,24m} and define the blocks B € B as supports of codewords of
minimal weight. Thus the block size equals 4m + 4. Due to Assmus and Mattson [1],
D¢ = (P, B) forms a self-orthogonal 5-(24m, 4m + 4, \) design.

If A4 denotes the number of codewords of minimal weight a double counting argument

shows that y
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Since, according to [12],

we obtain



Thus a binary extremal self-dual code of length n = 24m yields a self-orthogonal
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design.
Conversely, suppose that D is a self-orthogonal 5-(24m,4m + 4, (iﬁ”‘:f)) design. The

related binary code C(D) is defined as the Fa-linear span of the rows of the block-point
incidence matrix of D. Clearly, C'(D) is self-orthogonal since D is self-orthogonal.

In order to prove that C(D) is self-dual we may proceed as follows. Let ¢t € C(D)*
with wt(ct) = w and let S denote the support of ¢+. Hence |S| = w. If n; denotes the
number of blocks intersecting S in exactly i points (the n; are usually called intersection
numbers) and
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then we have the Mendelsohn equations

L J@i)ngi:Aj(;‘,’) (j=0,1,...,5) (2)
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(see [13] or ([3], Satz 2.1.1). In case we are able to prove that the system (2) of linear
equations has nonnegative integer solutions ny; € Ny only if 4 | w then C(D)~ is doubly-
even which implies

wlg

C(D)* € (C(D)H)*" = C(D).
Hence C(D) is self-dual since C(D) C C(D)* .

This approach works properly for m = 1,...,25 unless m = 7,13,14,15 and 23. In
the exceptional cases the method fails since there might be solutions ny; € Ny of (2) for
all w = 2 mod 4.

Remark 1 Note that for m = 1 there is exactly one binary extremal self-dual code,
namely the [24,12, 8] extended Golay code and exactly one 5-(24,8,1) design, a Steiner
system, where the related code is the binary extended Golay code (see ([14], Theorem
5) and ([2], Theorem 8.6.2)). For m = 2 there is again exactly one binary extremal
self-dual code, namely the binary extended quadratic residue code [10] and exactly one
self-orthogonal 5-(48,12,8) design ([9], Theorem 1.1), where the related code is the binary
extended quadratic residue code of length 48.

In case m = 3 and m = 4 we do not know about the existence neither of binary extremal
self-dual codes of length 72 or 96 nor of self-orthogonal 5-(72,16,78) or 5-(96,20,816)
designs D. However, according to [8] and [7], the related codes C(D) of the putative
designs are extremal self-dual in both cases.



2 The case m =5

Unfortunately, for m = 5, we are not able to prove that the related code of the putative
5-design is extremal. More precisely, we have

Theorem Let D be a self-orthogonal 5-(120, 24, 8855) design. Then C(D) = C(D)+ with
minimum distance d = 16 or d = 24.
Proof: Let D be a self-orthogonal 5-(120, 24, 8855) design. According to (1) one easily
computes A\g = 39703755, A\; = 7940751, Ay = 1534767, A3 = 286143, A4 = 51359 and
A = \5 = 8855. Let C' = C(D). Clearly C' C C+ since D is self-orthogonal.

Next let ¢t € C* with wt(ct) = w > 0. Since ng; = 0 for 2i > 24 the system (2) of
equations may be written as

xA=10 (3)
where
€T = (no, n2, N4, Ne, Ng, N10, 112, N14, N16, 118, 120, 122, 7?24)»
b=( Ao, M(7), A(5), As(3), M), As(3) )

and

0 0 0 0 0

2 1 0 0 0

4 6 4 1 0

6 15 20 15 6

8 28 56 70 56

10 45 120 210 252
66 220 495 792
14 91 364 1001 2002
16 120 560 1820 4368
18 153 816 3060 8568
20 190 1140 4845 15504
22 231 1540 7315 26334
24 276 2024 10626 42504
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Solving the system (3) of equations we find

nip = 510 — 6n12 — 217114 — 56n16 — 1267118 — 252n20 — 4627122 — 792?224,

where

Bio = m(1771w5 — 120428w* + 3253580w> — 41174416w? + 204795264w).

One easily checks that 519 ¢ Z if w # 0 mod 4. Therefore w = 0 mod 4 which shows that
C* is doubly-even. In particular, C* is self-orthogonal which proves that C' is self-dual.



Finally, in order to compute the minimum distance d of C let ¢ € C*+ = C be of
minimum weight wt(c) = w = d. According to (2) we have
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Since 2i(2i—2)ng; > 0 for i =0, ..., | § ] we obtain w > % > 6. Therefore the minimum
distance d satisfies d > 8.

Using a computer algebra system we see that for w = 8 and w = 12 the system (3)
of equations has no solution consisting of nonnegative integers. Thus we have d > 16. In
contrast to w = 8 and w = 12 there are nonnegative integer solutions for w = 16 and
w = 20, for instance

z = (1599377, 17248920, 16427320, 4325776, 66690, 35672, 0, 0, 0,0, 0, 0)

and
x = (574140, 10214100, 18892755, 8752800, 1200300, 69660, 0, 0, 0,0, 0, 0),

respectively. We claim that d = 20 can not occur which finishes the proof.

By Gleason’s theorem [6], the homogenous weight enumerator We(z,y) is given by

5
Wo(z,y) = ai(a® + 1aty + %)% @ty (o -y,
=0

where a; € Z for i = 0,...,5. Thus

We(1,y) =ap + (210ag + a1)y* + (20595a0 + 164a; + as)y® + . ..
= Ay + A20y20 + A24y24 +...,

where A; denotes the number of codewords of weight 4. In particular we have

1 0 0 0 0 aop 1

210 1 0 0 0 al 0
20595 164 1 0 0 az | =10
1251460 12282 118 1 O as 0
52705485 554740 6085 72 1 a4 0

The unique solution of this system of equations is

(ao, a1, az, a3, aq) = (1,—20, 13845, —305950, 1571490).



Therefore Aoy = 492372 + a5 > 0 and Aoy = 29856315 — 20a5. Since —as < 492372 we get
Aoy = 29856315 — 20as < 29856315 + 9847440 = 39703755

which contradicts the fact that the incidence matrix of the design D has 39703755 row
vectors of weight 24. O

In the proof we used only the Mendelsohn equations from design theory. There are
other equations like the K&hler equations or higher intersection numbers (see [3]). However
neither of them lead to a contradiction in case d = 16.

3 Automorphism groups

It is well-known that the automorphism group of the binary extended Golay code coincides
with the automorphism group of its related 5-(24, 8, 1) design; it is the Mathieu group May.
The same happens with the binary extended quadratic residue code of length 48 and its
related self-orthogonal 5-(48,12,8) design. The group is PSL(2,47). In general we have

Proposition 2 Let C be a binary extremal self-dual [24m, 12m,4m + 4] code with related
self-orthogonal 5-(24m, 4m + 4, (5m__12)) design D. If C(D)*+ = C(D) then

m

Aut(C) = Aut(D).

Proof: The condition C(D)* = C(D) implies in particular that C is generated by the set
S ={v1,...,vs} of all codewords of minimum weight w = d = 4m + 4.

Let 0 € Aut(D). For ¢ = Y7 | oyv; € C we put o(c) = Y7 a;0(v;). Note that this is
well defined since o permutes the coordinates {1,...,24m}. Clearly, o(v;) € S C C for all
i, hence o(c) € C. This proves that o € Aut(C).

Conversely, suppose that o € Aut(C). Since o acts as a permutation on S it induces a
permutation on the blocks which shows that o € Aut(D). O

Remarks 3 a) By the Theorem and the computations we mentioned in the previous sec-
tions we have C(D)* = C(D) for all self-orthogonal 5-(24m,4m + 4, (5;?:12)) designs D
withm =1,...,25 unless m = 7,13, 14, 15, 23. Thus for these m the automorphism group
of a binary extremal self-dual [24m, 12m,4m + 4] code C is equal to the automorphism
group of its related design D.

b) Since C(D) is extremal for m = 3 and m = 4 the automorphism group of a self-
orthogonal 5-(72,16,78) or 5-(96,20,816) design equals the automorphism group of the
related extremal self-dual code. Thus, according to the main theorem in [4], the automor-
phism group of a putative self-orthogonal 5-(72,16,78) design is solvable of order less or
equal to 36. Information on the automorphism group of a self-orthogonal 5-(96, 20, 816)
design can be taken from [5].



4 Questions

Let D be a self-orthogonal 5-(24m, 4m + 4, (572"”__12)) design and let C'(D) denote its related
code as defined in the introduction. Due to the results in the literature and the previous

sections we may ask.

Question 1 Do we always have C(D)+ = C(D)?
Question 2 Is C(D) always an extremal self-dual [24m, 12m,4m + 4] code?

Note, that an affirmative answer to the question 1 implies that the automorphism
group of an extremal self-dual code of length 24m is equal to the automorphism group
of its related 5-design. An affirmative answer of question 2 says that the existence of an
extremal self-dual [24m, 12m, 4m—+4] code is equivalent to the existence of a self-orthogonal
5-(24m, 4m + 4, (5m_2)) design.

m—1
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