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Abstract

We prove that the binary code C of length 120 related to a self-orthogonal 5-(120, 24, 8855)
design is self-dual and has minimum distance d = 24 (i.e. C is extremal) or d = 16.
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1 Introduction

A t-(v, k, λ) design D = (P,B), shortly a t-design, is a set P of v points together with
a collection B of k-subsets B of P (called blocks) such that every t distinct points are
together incident with exactly λ blocks. The design is called self-orthogonal if

|B ∩B′| ≡ k mod 2

for all blocks B,B′ ∈ B.
Let C be a binary extremal self-dual code of length n = 24m. According to Mallows and

Sloane [12], the minimum distance of an extremal code of length 24m satisfies d = 4m+4.
We put P = {1, . . . , 24m} and define the blocks B ∈ B as supports of codewords of
minimal weight. Thus the block size equals 4m + 4. Due to Assmus and Mattson [1],
DC = (P,B) forms a self-orthogonal 5-(24m, 4m+ 4, λ) design.

If Ad denotes the number of codewords of minimal weight a double counting argument
shows that (

n

5

)
λ = Ad

(
d

5

)
.

Since, according to [12],

Ad =

(
n
5

)(
5m−2
m−1

)(
d
5

)
we obtain

λ =

(
5m− 2

m− 1

)
.
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Thus a binary extremal self-dual code of length n = 24m yields a self-orthogonal

5-(24m, 4m+ 4,

(
5m− 2

m− 1

)
)

design.
Conversely, suppose that D is a self-orthogonal 5-(24m, 4m + 4,

(
5m−2
m−1

)
) design. The

related binary code C(D) is defined as the F2-linear span of the rows of the block-point
incidence matrix of D. Clearly, C(D) is self-orthogonal since D is self-orthogonal.

In order to prove that C(D) is self-dual we may proceed as follows. Let c⊥ ∈ C(D)⊥

with wt(c⊥) = w and let S denote the support of c⊥. Hence |S| = w. If ni denotes the
number of blocks intersecting S in exactly i points (the ni are usually called intersection
numbers) and

λj = λ

(
24m−j
5−j

)(
4m+4−j

5−j

) (1)

then we have the Mendelsohn equations

⌊w
2
⌋∑

i=0

(
2i

j

)
n2i = λj

(
w

j

)
(j = 0, 1, . . . , 5) (2)

(see [13] or ([3], Satz 2.1.1). In case we are able to prove that the system (2) of linear
equations has nonnegative integer solutions n2i ∈ N0 only if 4 | w then C(D)⊥ is doubly-
even which implies

C(D)⊥ ⊆ (C(D)⊥)⊥ = C(D).

Hence C(D) is self-dual since C(D) ⊆ C(D)⊥.

This approach works properly for m = 1, . . . , 25 unless m = 7, 13, 14, 15 and 23. In
the exceptional cases the method fails since there might be solutions n2i ∈ N0 of (2) for
all w ≡ 2 mod 4.

Remark 1 Note that for m = 1 there is exactly one binary extremal self-dual code,
namely the [24, 12, 8] extended Golay code and exactly one 5-(24, 8, 1) design, a Steiner
system, where the related code is the binary extended Golay code (see ([14], Theorem
5) and ([2], Theorem 8.6.2)). For m = 2 there is again exactly one binary extremal
self-dual code, namely the binary extended quadratic residue code [10] and exactly one
self-orthogonal 5-(48, 12, 8) design ([9], Theorem 1.1), where the related code is the binary
extended quadratic residue code of length 48.

In casem = 3 andm = 4 we do not know about the existence neither of binary extremal
self-dual codes of length 72 or 96 nor of self-orthogonal 5-(72, 16, 78) or 5-(96, 20, 816)
designs D. However, according to [8] and [7], the related codes C(D) of the putative
designs are extremal self-dual in both cases.
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2 The case m = 5

Unfortunately, for m = 5, we are not able to prove that the related code of the putative
5-design is extremal. More precisely, we have

Theorem Let D be a self-orthogonal 5-(120, 24, 8855) design. Then C(D) = C(D)⊥ with
minimum distance d = 16 or d = 24.

Proof: Let D be a self-orthogonal 5-(120, 24, 8855) design. According to (1) one easily
computes λ0 = 39703755, λ1 = 7940751, λ2 = 1534767, λ3 = 286143, λ4 = 51359 and
λ = λ5 = 8855. Let C = C(D). Clearly C ⊆ C⊥ since D is self-orthogonal.

Next let c⊥ ∈ C⊥ with wt(c⊥) = w > 0. Since n2i = 0 for 2i > 24 the system (2) of
equations may be written as

xA = b (3)

where
x = (n0, n2, n4, n6, n8, n10, n12, n14, n16, n18, n20, n22, n24),

b =
(
λ0, λ1

(
w
1

)
, λ2

(
w
2

)
, λ3

(
w
3

)
, λ4

(
w
4

)
, λ5

(
w
5

) )
and

A =



1 0 0 0 0 0
1 2 1 0 0 0
1 4 6 4 1 0
1 6 15 20 15 6
1 8 28 56 70 56
1 10 45 120 210 252
1 12 66 220 495 792
1 14 91 364 1001 2002
1 16 120 560 1820 4368
1 18 153 816 3060 8568
1 20 190 1140 4845 15504
1 22 231 1540 7315 26334
1 24 276 2024 10626 42504



.

Solving the system (3) of equations we find

n10 = β10 − 6n12 − 21n14 − 56n16 − 126n18 − 252n20 − 462n22 − 792n24,

where

β10 =
1

32 · 8 · 3
(1771w5 − 120428w4 + 3253580w3 − 41174416w2 + 204795264w).

One easily checks that β10 ̸∈ Z if w ̸≡ 0 mod 4. Therefore w ≡ 0 mod 4 which shows that
C⊥ is doubly-even. In particular, C⊥ is self-orthogonal which proves that C is self-dual.
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Finally, in order to compute the minimum distance d of C let c ∈ C⊥ = C be of
minimum weight wt(c) = w = d. According to (2) we have

2

⌊w
2
⌋∑

i=0

(
2i
2

)
n2i −

⌊w
2
⌋∑

i=0

2in2i = 2λ2

(
w
2

)
− λ1w,

hence
⌊w
2
⌋∑

i=0

2i(2i− 2)n2i = w((w − 1)λ2 − λ1).

Since 2i(2i−2)n2i ≥ 0 for i = 0, ..., ⌊w2 ⌋ we obtain w ≥ λ1+λ2
λ2

> 6. Therefore the minimum
distance d satisfies d ≥ 8.

Using a computer algebra system we see that for w = 8 and w = 12 the system (3)
of equations has no solution consisting of nonnegative integers. Thus we have d ≥ 16. In
contrast to w = 8 and w = 12 there are nonnegative integer solutions for w = 16 and
w = 20, for instance

x = (1599377, 17248920, 16427320, 4325776, 66690, 35672, 0, 0, 0, 0, 0, 0)

and
x = (574140, 10214100, 18892755, 8752800, 1200300, 69660, 0, 0, 0, 0, 0, 0),

respectively. We claim that d = 20 can not occur which finishes the proof.

By Gleason’s theorem [6], the homogenous weight enumerator WC(x, y) is given by

WC(x, y) =
5∑

i=0

ai(x
8 + 14x4y4 + y8)15−3i(x4y4(x4 − y4)4)i,

where ai ∈ Z for i = 0, ..., 5. Thus

WC(1, y) = a0 + (210a0 + a1)y
4 + (20595a0 + 164a1 + a2)y

8 + . . .

=A0 +A20y
20 +A24y

24 + . . . ,

where Ai denotes the number of codewords of weight i. In particular we have
1 0 0 0 0
210 1 0 0 0

20595 164 1 0 0
1251460 12282 118 1 0
52705485 554740 6085 72 1




a0
a1
a2
a3
a4

 =


1
0
0
0
0

 .

The unique solution of this system of equations is

(a0, a1, a2, a3, a4) = (1,−20, 13845,−305950, 1571490).
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Therefore A20 = 492372+ a5 > 0 and A24 = 29856315− 20a5. Since −a5 < 492372 we get

A24 = 29856315− 20a5 < 29856315 + 9847440 = 39703755

which contradicts the fact that the incidence matrix of the design D has 39703755 row
vectors of weight 24. 2

In the proof we used only the Mendelsohn equations from design theory. There are
other equations like the Köhler equations or higher intersection numbers (see [3]). However
neither of them lead to a contradiction in case d = 16.

3 Automorphism groups

It is well-known that the automorphism group of the binary extended Golay code coincides
with the automorphism group of its related 5-(24, 8, 1) design; it is the Mathieu group M24.
The same happens with the binary extended quadratic residue code of length 48 and its
related self-orthogonal 5-(48, 12, 8) design. The group is PSL(2, 47). In general we have

Proposition 2 Let C be a binary extremal self-dual [24m, 12m, 4m+4] code with related
self-orthogonal 5-(24m, 4m+ 4,

(
5m−2
m−1

)
) design D. If C(D)⊥ = C(D) then

Aut(C) = Aut(D).

Proof: The condition C(D)⊥ = C(D) implies in particular that C is generated by the set
S = {v1, . . . , vs} of all codewords of minimum weight w = d = 4m+ 4.
Let σ ∈ Aut(D). For c =

∑s
i=1 αivi ∈ C we put σ(c) =

∑s
i=1 αiσ(vi). Note that this is

well defined since σ permutes the coordinates {1, . . . , 24m}. Clearly, σ(vi) ∈ S ⊆ C for all
i, hence σ(c) ∈ C. This proves that σ ∈ Aut(C).
Conversely, suppose that σ ∈ Aut(C). Since σ acts as a permutation on S it induces a
permutation on the blocks which shows that σ ∈ Aut(D). 2

Remarks 3 a) By the Theorem and the computations we mentioned in the previous sec-
tions we have C(D)⊥ = C(D) for all self-orthogonal 5-(24m, 4m + 4,

(
5m−2
m−1

)
) designs D

with m = 1, . . . , 25 unless m = 7, 13, 14, 15, 23. Thus for these m the automorphism group
of a binary extremal self-dual [24m, 12m, 4m + 4] code C is equal to the automorphism
group of its related design D.
b) Since C(D) is extremal for m = 3 and m = 4 the automorphism group of a self-
orthogonal 5-(72, 16, 78) or 5-(96, 20, 816) design equals the automorphism group of the
related extremal self-dual code. Thus, according to the main theorem in [4], the automor-
phism group of a putative self-orthogonal 5-(72, 16, 78) design is solvable of order less or
equal to 36. Information on the automorphism group of a self-orthogonal 5-(96, 20, 816)
design can be taken from [5].
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4 Questions

Let D be a self-orthogonal 5-(24m, 4m+4,
(
5m−2
m−1

)
) design and let C(D) denote its related

code as defined in the introduction. Due to the results in the literature and the previous
sections we may ask.

Question 1 Do we always have C(D)⊥ = C(D)?

Question 2 Is C(D) always an extremal self-dual [24m, 12m, 4m+ 4] code?

Note, that an affirmative answer to the question 1 implies that the automorphism
group of an extremal self-dual code of length 24m is equal to the automorphism group
of its related 5-design. An affirmative answer of question 2 says that the existence of an
extremal self-dual [24m, 12m, 4m+4] code is equivalent to the existence of a self-orthogonal
5-(24m, 4m+ 4,

(
5m−2
m−1

)
) design.
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