On higher Frobenius-Schur indicators

Yanjun Liu and Wolfgang Willems

Abstract

Similarly to the Frobenius-Schur indicator of irreducible characters we consider higher Frobenius-Schur indicators $\nu_{p^{n}}(\chi)=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{p^{n}}\right)$ for primes p and $n \in$ \mathbb{N}, where G is a finite group and χ is a generalized character of G. It turns out that these invariants give answers to interesting questions in representation theory. In particular, we give several characterizations of groups via higher Frobenius-Schur indicators.

Keywords. irreducible character, higher Frobenius-Schur indicator, Brauer character, permutation module

MSC classification. 20C15, 20C20

1 Introduction

Throughout the paper let G be a finite group, p a prime and k a splitting field of characteristic p for G and all its subgroups. In some of the proofs we take k as the residue field of a p-modular system $(K, \Re, k=\Re / \wp)$ where $p \in \wp=\pi \Re$. By a we denote the p-exponent of G, i.e., $a=\min \left\{n \mid n \in \mathbb{N}, g^{p^{n}}=1\right.$ for all p-elements $\left.g \in G\right\}$. Let $G_{p^{n}}=\left\{x \in G \mid x^{p^{n}}=1\right\}$ for $n \in \mathbb{N}$ and $G_{p^{\prime}}=\{g \in G \mid p \nmid \operatorname{ord}(g)\}$. Then the k-vector space $k G_{p^{n}}$ (k not necessarily of characteristic p) becomes a $k G$-module via the conjugation action by G. If $\left\{x_{1}, x_{2}, \cdots, x_{r}\right\}$ is a set of representatives of the G-conjugacy classes of $G_{p^{n}}$, we obtain the natural decomposition

$$
k G_{p^{n}} \cong\left(k_{C_{G}\left(x_{1}\right)}\right)^{G} \oplus\left(k_{C_{G}\left(x_{2}\right)}\right)^{G} \oplus \cdots \oplus\left(k_{C_{G}\left(x_{r}\right)}\right)^{G} .
$$

In the case of even characteristic, i.e., $p=2$, the so-called involution module $k G_{2}$ has been studied to some extend by several authors. By ([5], Corollary 4.6), we have

$$
1+\left|G_{2}\right|=\sum_{\chi} \nu_{2}(\chi) \chi(1)
$$

where the sum runs through the set of irreducible complex characters of G and $\nu_{2}(\chi)$ denotes the Frobenius-Schur indicator of χ. Robinson started in [18] the control of the projective summands of $k G_{2}$ by properties of the Frobenius-Schur indicator. In a series of papers $[11,12,13,14]$ Murray continued the investigations of the structure of $k G_{2}$. The block decomposition of $k G_{2}$ has been given in [9] by Martínez-Pérez and the second author, using a natural splitting of the cohomology module $H^{1}\left(G, \Lambda^{2}(k G)\right)$, which turned out to be isomorphic to the involution module.

In this note we continue the investigations of the structure of $k G_{p^{n}}$, in particular for odd primes p. Here the higher Frobenius-Schur indicators are coming in.

2 The module $k G_{p^{n}}$ and higher Frobenius-Schur indicators

Let $\operatorname{Irr}(G)$ and $\operatorname{IBr}_{p}(G)$ denote the set of irreducible complex, resp. irreducible Brauer characters of G in characteristic p. By $1 \in \operatorname{Irr}(G)$, resp. $1 \in \operatorname{IBr}_{p}(G)$ we always mean the trivial character, resp. the trivial Brauer character. Finally, by $[\cdot, \cdot]$ we denote the usual scalar product on the ring of generalized characters.

For $\ell \in \mathbb{N}$, we put

$$
\vartheta_{\ell}(g)=\left|\left\{h \in G \mid h^{\ell}=g\right\}\right| .
$$

ϑ_{ℓ} is a class function, and clearly $\vartheta_{\ell}=\sum_{\chi \in \operatorname{Irr}(G)} \nu_{\ell}(\chi) \chi$, where $\nu_{\ell}(\chi)=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{\ell}\right) \in$ \mathbb{Z} (see [5], Chapter 4). We call $\nu_{\ell}(\chi)$ the higher Frobenius-Schur indicator of χ for $\ell \neq 2$. By ([5], Theorem 4.5), we have $\nu_{2}(\chi)=-1,0$, or 1 for $\chi \in \operatorname{Irr}(G)$. But for $l \neq 2$, the situation turns out to be more subtle and in fact, there is even no absolute bound for $\nu_{\ell}(\chi)$ (see [5], Problems 4.9).

For a generalized character ψ we extend the definition of higher Frobenius-Schur indicators by putting

$$
\nu_{\ell}(\psi)=\frac{1}{|G|} \sum_{g \in G} \psi\left(g^{\ell}\right)=\left[\psi^{(\ell)}, 1\right]
$$

where $\psi^{(\ell)}=\psi\left(g^{\ell}\right)$ for all $g \in G$. Finally, for a Brauer character $\varphi \in \operatorname{IBr}_{p}(G)$, we always denote by Φ_{φ} the projective indecomposable character of G associated to φ. Furthermore, 1_{G} denotes the trivial character in characteristic p and 0 as well, and we shortly write Φ_{1} for $\Phi_{1_{G}}$. Finally, for a character χ, we put $\chi^{\circ}=\left.\chi\right|_{p_{p^{\prime}}}$.

In ([11], Lemma 3), Murray proved that $\varphi \in \operatorname{IBr}_{2}(G)$ occurs in the Brauer character of the involution module over an algebraically closed field of characteristic 2 with multiplicity $\nu_{2}\left(\Phi_{\varphi}\right)$. His proof works not only for G_{2}, but also for all $G_{p^{n}}$.

Theorem 2.1 If $\Lambda_{p^{n}}$ is the complex character of $\mathbb{C} G_{p^{n}}$ with $n \in \mathbb{N}$, then

$$
\Lambda_{p^{n}}^{\circ}=\sum_{\chi \in \operatorname{Irr}(G)} \nu_{p^{n}}(\chi) \chi^{\circ}=\sum_{\varphi \in \operatorname{IBr}_{p}(G)} \nu_{p^{n}}\left(\Phi_{\varphi}\right) \varphi
$$

where

$$
\nu_{p^{n}}\left(\Phi_{\varphi}\right) \leq \nu_{p^{a}}\left(\Phi_{\varphi}\right) \leq \Phi_{\varphi}(1) \frac{|G|-\left|G_{p^{\prime}}\right|}{|G|}+\delta_{\varphi 1_{G}} .
$$

In particular, $\nu_{p^{n}}\left(\Phi_{\varphi}\right)$ is the multiplicity of φ in the p-Brauer character of $k G_{p^{n}}$, hence $\nu_{p^{n}}\left(\Phi_{\varphi}\right) \in \mathbb{N}_{0}$ and $\nu_{p^{n}}\left(\Phi_{1}\right)>0$.

Proof: By definition of $k G_{p^{n}}$, we have $\Lambda_{p^{n}}(g)=\left|G_{p^{n}} \cap C_{G}(g)\right|$ for all $g \in G$. Note that the map $\varsigma: G_{p^{\prime}} \rightarrow G_{p^{\prime}}$ defined by $\varsigma(g)=g^{p^{n}}$ is a bijection for any $n \in N$. If $g \in G_{p^{\prime}}$, then for any $h \in G$ such that $h^{p^{n}}=g$, the p^{\prime}-part $h_{p^{\prime}}=g^{\frac{1}{p^{n}}}$ is uniquely determined by g and $\left(h_{p}\right)^{p^{n}}=1$. Hence $h_{p^{n}} \in G_{p^{n}} \cap C_{G}(g)$. On the other hand, for any $x \in G_{p^{n}} \cap C_{G}(g)$, we have $\left(x\left(g_{p^{\prime}}\right)^{\frac{1}{p^{n}}}\right)^{p^{n}}=g_{p^{\prime}}$. So it follows that $\left|G_{p^{n}} \cap C_{G}(g)\right|=\left|\left\{h \in G \mid h^{p^{n}}=g\right\}\right|$ if $g \in G_{p^{\prime}}$. From $\left|\left\{h \in G \mid h^{p^{n}}=g\right\}\right|=\sum_{\chi \in \operatorname{Irr}(G))} \nu_{p^{n}}(\chi) \chi$ we conclude that

$$
\begin{aligned}
\Lambda_{p^{n}}^{\circ} & =\sum_{\chi \in \operatorname{Irr}(G))} \nu_{p^{n}}(\chi) \chi^{\circ} \\
& =\sum_{\chi \in \operatorname{Irr}(G))} \sum_{\varphi \in \operatorname{IBr}_{p}(G)} \nu_{p^{n}}(\chi) d_{\chi \varphi} \varphi \\
& =\sum_{\varphi \in \operatorname{IBr}_{p}(G)} \nu_{p^{n}}\left(\Phi_{\varphi}\right) \varphi .
\end{aligned}
$$

Finally, we have to prove the upper bound for $\nu_{p^{n}}\left(\phi_{\varphi}\right)$. Since $\nu_{p^{n}}\left(\phi_{\varphi}\right)$ is the multiplicity of φ in $\Lambda_{p^{n}}^{\circ}$, we obviously have $\nu_{p^{n}}\left(\phi_{\varphi}\right) \leq \nu_{p^{a}}\left(\phi_{\varphi}\right)$ for all $n \in \mathbb{N}$.

$$
\begin{aligned}
\nu_{p^{a}}\left(\Phi_{\varphi}\right) & =\frac{1}{|G|} \sum_{g \in G} \Phi_{\varphi}\left(g^{p^{a}}\right) \\
& =\frac{1}{|G|} \sum_{g \in G_{p^{\prime}}} \Phi_{\varphi}\left(g^{p^{a}}\right)+\frac{1}{|G|} \sum_{g \in G \backslash G_{p^{\prime}}} \Phi_{\varphi}\left(g^{p^{a}}\right) \\
& =\delta_{\varphi 1_{G}}+\frac{1}{|G|} \sum_{g \in G \backslash G_{p^{\prime}}} \Phi_{\varphi}\left(g^{p^{a}}\right) \\
& =\delta_{\varphi 1_{G}}+\frac{1}{|G|} \sum_{g \in G \backslash G_{p^{\prime}}} \Phi_{\varphi}\left(g^{p^{a}}\right) \\
& \leq \delta_{\varphi 1_{G}}+\frac{|G|-\left|G_{p^{\prime}}\right|}{|G|} \Phi_{\varphi}(1)
\end{aligned}
$$

Finally, $\nu_{p^{n}}\left(\Phi_{1}\right) \neq 0$ since $k G_{p^{n}}$ is a permutation module.

The following immediate consequence of Theorem 2.1 generalizes ([5], Corollary 4.6).

Corollary 2.2 If t is the number of elements of order p in G, then

$$
1+t=\sum_{\chi \in \operatorname{Irr}(G)} \nu_{p}(\chi) \chi(1)
$$

Proof: By Theorem 2.1, we have $1+t=\left|G_{p}\right|=\sum_{\chi \in \operatorname{Irr}(G)} \nu_{p}(\chi) \chi(1)$.

Note that for $n \in \mathbb{N}$ and $g \in G_{p^{\prime}}$, we have $\Lambda_{p^{n}}(g)=\left|C_{G}(g)_{p^{n}}\right|$. Thus the class function defined by $g \mapsto\left|C_{G}(g)_{p^{n}}\right|$ is a Brauer character, by Theorem 2.1. In general, $\delta_{p^{n}}$ is not a character, but a generalized character. Furthermore,

$$
\left|C_{G}(g)_{p^{n}}\right|=\sum_{\varphi \in \operatorname{IBr}_{p}(G)} \nu_{p^{n}}\left(\Phi_{\varphi}\right) \varphi(g)
$$

for $g \in G_{p^{\prime}}$.
In a first step to understand the structure of $k G_{p^{n}}$, we need to know more about the higher Frobenius-Schur indicators.

Proposition 2.3 For a projective indecomposable character Φ of G and all $n \in \mathbb{N}$, we have $\nu_{p^{n}}(\Phi) \equiv[\Phi, 1] \bmod p$. In particular, $\nu_{p^{n}}(\Phi) \equiv \nu_{p}(\Phi) \bmod p$.

Proof: By ([5], Problems 4.7), we know that $\Phi^{p^{n}}-\Phi^{\left(p^{n}\right)}=p^{n} \mu$ for some character μ, hence $\left[\Phi^{p^{n}}, 1\right] \equiv\left[\Phi^{\left(p^{n}\right)}, 1\right] \bmod p$. Since $\nu_{p^{n}}(\Phi)=\left[\Phi^{\left(p^{n}\right)}, 1\right]$, it suffices to show that $\left[\Phi^{p^{n}}, 1\right] \equiv[\Phi, 1] \bmod p$. Using the p-modular $\operatorname{system}(K, \Re, k=\Re / \wp)$, we get

$$
\begin{aligned}
{\left[\Phi^{p^{n}}, 1\right]=\frac{1}{|G|} \sum_{g \in G} \Phi^{p^{n}}(g) } & =\frac{1}{|G|} \sum_{g \in G_{p^{\prime}}} \Phi^{p^{n}}(g) & & \\
& \equiv \frac{1}{|G|} \sum_{g \in G_{p^{\prime}}} \Phi\left(g^{p^{n}}\right) & & \bmod \wp \\
& =\frac{1}{|G|} \sum_{g \in G_{p^{\prime}}} \Phi(g) & & \bmod \wp \\
& =[\Phi, 1] & & \bmod \wp .
\end{aligned}
$$

Thus $\left[\Phi^{p^{n}}, 1\right] \equiv[\Phi, 1] \bmod \wp \cap \mathbb{Z}=p \mathbb{Z}$; i.e., $\left[\Phi^{p^{n}}, 1\right] \equiv[\Phi, 1] \bmod p$.

Theorem 2.4 If G is a group of even order, then $2 \mid \nu_{2^{n}}\left(\Phi_{1}\right)$ for all $n \in \mathbb{N}$.

Proof: By Theorem 2.1, we have $\sum_{\varphi \in \operatorname{IBr}_{2}(G)} \nu_{2^{n}}\left(\Phi_{\varphi}\right) \varphi(1)=\left|G_{2^{n}}\right|$.
If $S=G \backslash G_{2^{n}}$, then for all $x \in S$, we have $x \neq x^{-1} \in S$. Thus $2||S|$. Since $|G|=\left|G_{2^{n}}\right|+|S|$, it follows that $2\left|\left|G_{2^{n}}\right|\right.$. Furthermore, again by Theorem 2.1, $\nu_{2^{n}}\left(\Phi_{\varphi}\right)$ is a non-negative integer, and from $\overline{\Phi_{\varphi}}=\Phi_{\bar{\varphi}}$ we deduce that $\nu_{2^{n}}\left(\Phi_{\bar{\varphi}}\right)=\nu_{2^{n}}\left(\Phi_{\varphi}\right)$.

According to Fong's lemma ([15], Theorem 2.31), we have $2 \mid \varphi(1)$ for $1 \neq \varphi=\bar{\varphi} \in$ $\operatorname{IBr}_{2}(G)$. Thus

$$
\begin{aligned}
\left|G_{2^{n}}\right| & =\sum_{\varphi \in \operatorname{IBr}_{2}(G)} \nu_{2^{n}}\left(\Phi_{\varphi}\right) \varphi(1) \\
& =\nu_{2^{n}}\left(\Phi_{1}\right)+\sum_{1 \neq \bar{\varphi}=\varphi \in \operatorname{IBr}_{2}(G)} \nu_{2^{n}}\left(\Phi_{\varphi}\right) \varphi(1)+\sum_{\bar{\varphi} \neq \varphi \in \operatorname{IBr}_{2}(G)} \nu_{2^{n}}\left(\Phi_{\varphi}\right) \varphi(1), \\
& \equiv \nu_{2^{n}}\left(\Phi_{1}\right) \quad \bmod 2
\end{aligned}
$$

and the assertion follows since $2\left|\left|G_{2^{n}}\right|\right.$.

Note that Theorem 2.4 does not hold true for Φ_{φ} with $\varphi \neq 1_{G}$, and in the case p odd, also not for Φ_{1}.

Example 2.5 a) Let $\varphi=\bar{\varphi} \in \operatorname{IBr}_{2}(G)$ be a real valued Brauer character of 2-defect 0 where $2\left||G|\right.$. Then $\Phi_{\varphi}=\overline{\Phi_{\varphi}} \in \operatorname{Irr}(G)$. Hence $| \nu_{2}\left(\Phi_{\varphi}\right) \mid=1$. Acually, $\nu_{2}\left(\Phi_{\varphi}\right)=1$, by ([3], Proposition 1.1).
b) Let $p=3$ and $G=\mathrm{S}_{3}$. One easily computes $\Phi_{1}=1_{G}+\chi$ with $\chi(1)=2$. It follows $\nu_{3}\left(\Phi_{1}\right)=\frac{1}{6} \sum_{g \in G} \Phi_{1}\left(g^{3}\right)=\frac{1}{6} \sum_{g \in G}\left(1+\chi\left(g^{3}\right)\right)=\frac{1}{6}(3+3+3+1+1+1)=2$.

Theorem 2.4 has an interesting consequence for the decomposition matrix $D=\left(d_{\chi \varphi}\right)$ (see Corollary 2.7). In order to state it we need the following result which can be deduced from a paper of Quillen [16], and Thompson [19] as well. For the readers convenience, we present a proof which already appeared in the unpublished thesis [21] of the second author. In order to state and prove it we use again a p-modular system ($K, \Re, k=\Re / \wp)$ where $p \in \wp=\pi \Re$. Furthermore, let $^{-}: \Re \longrightarrow \Re / \wp=k$ be the natural epimorphism.

Lemma 2.6 Let V be a $K G$-module with a non-degenerate G-invariant symplectic bilinear form $b(\cdot, \cdot)$. Then V has an $\Re G$-lattice M, and there exists a chain of $k G$-modules $0 \subseteq R \subset \bar{M}$ such that \bar{M} / R and R (latter if not 0) carry non-degenerate G-invariant symplectic bilinear forms.

Proof: Let N be an $\Re G$-lattice of V, in particular $N \otimes_{\Re} K=V$. Multiplying the bilinear form by a suitable scalar we may assume that

$$
b(N, N) \subseteq \Re, \quad \text { but } \quad b(N, N) \nsubseteq \pi \Re
$$

We put

$$
\widehat{N}=\{v \mid v \in V, b(v, N) \subseteq \Re\}
$$

Let n_{1}, \ldots, n_{t} be free generators of the free \Re-module N. Since $V=N K$ and $V \cong V^{*}$, there are $v_{1}, \ldots, v_{t} \in V$ such that $b\left(v_{i}, n_{j}\right)=\delta_{i j}$. Thus v_{1}, \ldots, v_{t} are free generators of \widehat{N} as an \Re-module which shows that \widehat{N} is an $\Re G$-lattice of V. Let M be a maximal element in the set

$$
\left\{N^{\prime} \mid N \subseteq N^{\prime} \subseteq \widehat{N}, N^{\prime} \text { an } \Re G \text {-module, } b\left(N^{\prime}, N^{\prime}\right) \subseteq \Re\right\} .
$$

Note that M exists since \widehat{N} is a noetherian $\Re G$-module. We define a G-invariant symplectic k-bilinear form $c(\cdot, \cdot)$ on $\bar{M}=M / \pi M$ by

$$
c\left(\bar{m}, \overline{m^{\prime}}\right)=\overline{b\left(m, m^{\prime}\right)}
$$

for $m, m^{\prime} \in M$. Clearly, c is well defined. Since $b(M, M) \nsubseteq \pi \Re$, the radical $R=\operatorname{rad}_{c}(\bar{M})$ of c is a proper $k G$-submodule of \bar{M}. Thus \bar{M} / R carries a non-degenerate G-invariant symplectic bilinear form.

In the case $R \neq 0$ we show that also R carries a non-degenerate G-invariant symplectic bilinear form. Note that $U=\{m \mid m \in M, b(m, M) \subseteq \pi \Re\}$ is the preimage of R in M. Suppose that $b(U, U) \subseteq \pi^{2} \Re$. Hence $b\left(\pi^{-1} U, \pi^{-1} U\right) \subseteq \Re$. Since $N \subseteq M \subseteq \pi^{-1} U$, we have $b\left(\pi^{-1} U, M\right) \subseteq \Re$. It follows $M \subseteq \pi^{-1} U \subseteq \widehat{N}$ and by maximality of M, we obtain $M=\pi^{-1} U$, hence $U=\pi M$ which means that $R=0$ and we are done.

Thus $b(U, U) \subseteq \pi \Re$, but $b(U, U) \nsubseteq \pi^{2} \Re$. On $R=U / \pi M$ we define a G-invariant symplectic bilinear form $d(\cdot, \cdot)$ by

$$
d\left(u+\pi M, u^{\prime}+\pi M\right)=\overline{\pi^{-1} b\left(u, u^{\prime}\right)}
$$

for $u, u^{\prime} \in U$. The bilinear form d is well defined since

$$
d(\pi M, U)=\overline{\pi^{-1} b(\pi M, U)}=\overline{b(M, U)}=0 .
$$

To finish the proof it remains to show that d is non-degenerate. The preimage of the $\operatorname{radical}^{\operatorname{rad}_{d}(U) \text { of } d \text { in } R \text { is }}$

$$
U_{0}=\left\{u \mid u \in U, b(u, U) \subseteq \pi^{2} \Re\right\} .
$$

Clearly, $\pi M \subseteq U_{0}$, hence $M \subseteq \pi^{-1} U_{0}$. Now $b\left(\pi^{-1} U_{0}, \pi^{-1} U_{0}\right) \subseteq \Re$ implies $\pi^{-1} U_{0} \subseteq \widehat{N}$. The maximality of M forces $\pi^{-1} U_{0}=M$. Thus $\operatorname{rad}_{d} R=0$, and the proof is complete.

Corollary 2.7 If $p=2$ and $2||G|$, then
(i) $2 \mid d_{\chi 1_{G}}$ for $\chi=\bar{\chi} \in \operatorname{Irr}(G)$ with $\nu_{2}(\chi)=-1$.
(ii) $2 \mid \sum d_{\chi 1_{G}}$ where the sum runs over all $\chi=\bar{\chi} \in \operatorname{Irr}(G)$ with $\nu_{2}(\chi)=1$.

Proof: (i) The condition $\nu_{2}(\chi)=-1$ says that the module V affording χ carries a non-degenerate G-invariant symplectic form. By Lemma 2.6, V has a lattice M such that its reduction $\bar{M}=M / \wp M$ has a submodule R where R (if not 0) and \bar{M} / R have a non-degenerate G-invariant symplectic bilinear form. Since the trivial module does not allow a non-zero G-invariant symplectic bilinear form, its multiplicity in \bar{M} must be even according to the argument at the end of chapter 2 in [23].
(ii)

$$
\Phi_{1}=\sum_{\substack{\chi=\bar{\chi} \\ \nu_{2}(\chi)=1}} d_{\chi 1_{G}} \chi+\sum_{\substack{\chi=\bar{\chi} \\ \nu_{2}(\chi)=-1}} d_{\chi 1_{G}} \chi+\sum_{\substack{\chi \neq \bar{\chi} \\ \nu_{2}(\chi)=0}} d_{\chi 1_{G}}(\chi+\bar{\chi})
$$

Applying (i) we get

$$
\nu_{2}\left(\Phi_{1}\right) \equiv \sum_{\substack{\chi=\bar{\chi} \\ \nu_{2}(\chi)=1}} d_{\chi 1_{G}} \bmod 2
$$

Since $2 \mid \nu_{2}\left(\Phi_{1}\right)$, by Theorem 2.4, the assertion follows.

Example 2.8 For $G=\mathrm{SL}(2,5)$, we have the following numbers in agreement with Corollary 2.7:

$$
\begin{array}{c|ccccccccc}
d_{\chi 1_{G}} & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 2 \\
\hline \nu_{2}(\chi) \mid & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1
\end{array}
$$

Recall that $\nu_{2}(\chi) \in\{0,1\}$ for $\chi \in \operatorname{Irr}(G)$ of 2-defect zero. Actually $\nu_{2}(\chi)=0$ if χ is not real-valued and otherwise $\nu_{2}(\chi)=1$ (see Example 2.5).

Proposition 2.9 Let p be any prime dividing $|G|$ and $n \in \mathbb{N}$. If $\chi \in \operatorname{Irr}(G)$ is of p-defect zero, then $0 \leq \nu_{p^{n}}(\chi) \leq \chi(1)-\frac{\left|G_{p^{\prime}}\right|}{|G|_{p^{\prime}}} \chi(1)_{p^{\prime}} \leq \chi(1)-\chi(1)_{p^{\prime}}$.

Proof: By Theorem 2.1, we have

$$
0 \leq \nu_{p^{n}}(\chi) \leq \nu_{p^{a}}(\chi) \leq \chi(1) \frac{|G|-\left|G_{p^{\prime}}\right|}{|G|}
$$

since $\chi=\Phi_{\varphi}$ for $\varphi \neq 1_{G}$. Furthermore, $|G|_{p}=\chi(1)_{p}$, by ([15], Theorem 3.18), and $|G|_{p^{\prime}}| | G_{p^{\prime}} \mid$, by ([2], Proposition 15.9). Thus

$$
\chi(1) \frac{|G|-\left|G_{p^{\prime}}\right|}{|G|}=\chi(1)-\chi(1)_{p^{\prime}} \frac{\left|G_{p^{\prime}}\right|}{|G|_{p^{\prime}}} \leq \chi(1)-\chi(1)_{p^{\prime}}
$$

Example 2.10 Let $G=C_{2} \times \mathrm{A}_{4}$. One easily checks that for $p=3$, the group G has two irreducible characters χ and ψ, both of degree 3 , of 3 -defect zero and self-dual. For one of the characters, say χ, we have $\nu_{3}(\chi)=2$, for the other one $\nu_{3}(\psi)=0$. This shows in particular that the lower and upper bound in Proposition 2.9 are sharp, and $\nu_{p^{n}}(\chi)=0$ for p odd does not imply $\chi \neq \bar{\chi}$.

For the reader's convenience we recall the following well-known result (see for instance [17] or [7]).

Lemma 2.11 If each $g \in G_{p^{\prime}}$ is centralized by all p-elements of G, then

$$
G=\mathrm{O}_{p^{\prime}}(G) \times \mathrm{O}_{p}(G)
$$

Proof: For a prime $q \neq p$, let Q be a Sylow q-subgroup of G and let P be a Sylow p-subgroup. Clearly,

$$
\left.N=\left\langle Q^{g}\right| g \in G \text { and } q \neq p\right\rangle
$$

is a normal subgroup of G and N satisfies the assumption of the lemma. If $N<G$, then, by induction, $N=\mathrm{O}_{p^{\prime}}(N) \times \mathrm{O}_{p}(N)$. Since G / N is a p-group and centralizes $\mathrm{O}_{p^{\prime}}(N)$ we are done. Thus we may assume that $N=G$. Now P is central in G, hence a normal subgroup. By the Schur-Zassenhaus Theorem, P has a complement U in G, which is centralized by P, and the proof is complete.

For the next result, recall that p^{a} is the largest p-power dividing $|G|$.

Theorem 2.12 The following conditions are equivalent.
(i) $\nu_{p^{a}}\left(\Phi_{\varphi}\right)=0$ for all $1_{G} \neq \varphi \in \operatorname{IBr}_{p}(G)$.
(ii) $G=\mathrm{O}_{p^{\prime}}(G) \times \mathrm{O}_{p}(G)$.

Proof: (i) \Longrightarrow (ii) Recall that

$$
\left|C_{G}(g)_{p^{a}}\right|=\sum_{\varphi \in \operatorname{IBr}_{p}(G)} \nu_{p^{a}}\left(\Phi_{\varphi}\right) \varphi(g),
$$

for all $g \in G_{p^{\prime}}$. Thus, by the assumption in (i), we get

$$
\left|G_{p^{a}}\right|=\nu_{p^{a}}\left(\Phi_{1}\right)=\left|C_{G}(g)_{p^{a}}\right|,
$$

for all $g \in G_{p^{\prime}}$. Hence each p^{\prime}-element of G is centralized by all p-elements of G and the assertion follows by Lemma 2.11.
(ii) \Longrightarrow (i) For $1_{G} \neq \varphi \in \operatorname{IBr}_{p}(G)$ we have

$$
\begin{aligned}
\nu_{p^{a}}\left(\Phi_{\varphi}\right) & =\frac{1}{|G|} \sum_{g \in G} \Phi_{\varphi}\left(g^{p^{a}}\right)=\left|\mathrm{O}_{p}(G)\right| \frac{1}{|G|} \sum_{g \in \mathrm{O}_{p^{\prime}}(G)} \Phi_{\varphi}\left(g^{p^{a}}\right) \\
& =\left|\mathrm{O}_{p}(G)\right| \frac{1}{|G|} \sum_{g \in \mathrm{O}_{p^{\prime}}(G)} \Phi_{\varphi}(g)=\left|\mathrm{O}_{p}(G)\right|\left[\Phi_{\varphi}, 1_{G}\right]=0
\end{aligned}
$$

Proposition 2.13 Suppose that $p\left||G|\right.$. If $\nu_{p}\left(\Phi_{\varphi}\right)=0$ for all $1_{G} \neq \varphi \in \operatorname{IBr}_{p}(G)$, then G has a non-trivial central p-subgroup. In particular, $\mathrm{O}_{p}(G) \neq 1$.

Proof: As in the previous proof we have $\left|C_{G}(g)_{p}\right|=\sum_{\varphi \in \operatorname{IBr}_{p}(G)} \nu_{p}\left(\Phi_{\varphi}\right) \varphi(g)$, for all $g \in G_{p^{\prime}}$. Thus, by the assumption,

$$
\begin{equation*}
\left|C_{G}(g)_{p}\right|=\nu_{p}\left(\Phi_{1}\right) \tag{*}
\end{equation*}
$$

for all $g \in G_{p^{\prime}}$, and in particular $\left|C_{G}(g)_{p}\right|=\left|G_{p}\right|($ taking $g=1)$. Note that $\left|\nu_{p}\left(\Phi_{1}\right)\right| \neq 1$, since $p\left||G|\right.$. If P is a Sylow p-subgroup of G, then $P_{0}=\Omega_{1}(Z(P)) \neq 1$. Thus P_{0} centralizes P, and by $(*)$, all Sylow q-subgroups of G for $q \neq p$. This shows that $P_{0} \leq Z(G)$ and the proof is complete.

3 Groups whose irreducible characters all have non-zero Frobenius-Schur indicators

Suppose that G satisfies the following two conditions:
(i) All irreducible complex characters are real-valued, hence $\nu_{2}(\chi) \neq 0$ for all $\chi \in$ $\operatorname{Irr}(G)$.
(ii) For all nonlinear $\chi \in \operatorname{Irr}(G)$, we have $\nu_{2}(\chi)=-1$.

In [22], the second author proved that these conditions force G to be a 2-group. For instance, the quaternion group Q_{8} and elementary abelian 2-groups satisfy both conditions. In the following we prove an analogous result for higher Frobemius -Schur indicators, by using the classification of finite simple groups. In order to prove Theorem 3.4 we need the following observations.

Lemma 3.1 Let G be a q-group with $q \neq p$. Then $\nu_{p}(\chi)=0$ for all $1_{G} \neq \chi \in \operatorname{Irr}(G)$.

Proof: We have $\nu_{p}(\chi)=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{p}\right)=\frac{1}{|G|} \sum_{g \in G} \chi(g)=\left[\chi, 1_{G}\right]=\delta_{\chi 1_{G}}$.

Lemma 3.2 If G is an abelian p-group, but not elementary abelian, then there exists a linear chracter χ with $\nu_{p}(\chi)=0$.

Proof: Since G is not elementary abelian, there exists a normal subgroup N such that $G=\langle g N\rangle$ is cyclic of order p^{2}. Let $\chi \in \operatorname{Irr}(G)$ with Ker $\chi=N$ and $\chi(g N)=\epsilon$ where ϵ is a primitive complex p^{2}-th root of unity. If $\omega=\epsilon^{p}$, then

$$
\nu_{p}(\chi)=\frac{|N|}{|G|} \sum_{i=0}^{p^{2}} \chi\left(g^{p i} N\right)=\frac{1}{p^{2}} \cdot p\left(1+\omega+\cdots+\omega^{p-1}\right)=0
$$

Lemma 3.3 If G has a p-block B which is not of maximal defect, then G has a nonlinear irreducible character χ with $\nu_{p}(\chi) \geq 0$.

Proof: Clearly, all $\chi \in \operatorname{Irr}(B)$ are non-linear since the defect of B is not maximal. By Theorem 2.1, we have $\nu_{p}\left(\Phi_{\varphi}\right) \geq 0$ for all $\varphi \in \operatorname{IBr}_{p}(G)$. Writing $\Phi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(B)} d_{\chi \varphi} \chi$, we obtain

$$
0 \leq \nu_{p}\left(\Phi_{\varphi}\right)=\sum_{\chi \in \operatorname{Irr}(B)} d_{\chi \varphi} \nu_{p}(\chi)
$$

Thus there exists $\chi \in \operatorname{Irr}(B)$ with $\nu_{p}(\chi) \geq 0$.

Theorem 3.4 Let G be a finite group and p be an odd prime. Then G satisfies
(i) $\nu_{p}(\chi) \neq 0$ for all $\chi \in \operatorname{Irr}(G)$ and
(ii) $\nu_{p}(\chi)<0$ for all nonlinear $\chi \in \operatorname{Irr}(G)$
if and only if G is an elementary abelian p-group.

Proof: Clearly, if G is an elementary abelian p-group, then all irrecucible characters χ are linear and satisfy $\nu_{p}(\chi)=1$. Thus G satisfies both conditions. Conversely, let G be a group satisfying (i) and (ii). Clearly, any factor group of G also satisfies the conditions. In order to prove that G is an elementary abelian p-group we use induction on the order of G. Let N be a minimal normal subgroup of G. Then, by induction, we get that G / N is an elementary abelian p-group. Furthermore N is the unique minimal normal subgroup, since otherwise G is (up to an isomorphism) a subgroup of $G / N_{1} \times G / N_{2}$ which is an elementary abelian p-group, by induction. Now we may write

$$
N=S_{1} \times \cdots \times S_{t} \quad \text { with } \quad S=S_{1} \cong S_{i} \quad \text { for all } i .
$$

Case $p \nmid|S|$:
Thus $G=\mathrm{O}_{p^{\prime}} P$ where P is an elementary abelian p-group. Suppose that there exists $x \in \mathrm{O}_{p^{\prime}}$ with $\left|C_{G}(x)\right|_{p}<|P|$. Applying ([20], Theorem 1), we get that G has a p-block of non-maximal defect, contradicting Lemma 3.3. Thus $p \nmid\left|x^{G}\right|$ for all p^{\prime}-elements x and we obtain

$$
G=\mathrm{O}_{p^{\prime}}(G) \times P,
$$

by [17]. According to Lemma 3.1 we get $\mathrm{O}_{p^{\prime}}(G)=1$ and we are done.
Case $p||N|$:
Thus $p||S|$. We first suppose that the simple group S is non-abelian. Since all blocks of G have maximal defect by Lemma 3.3, all p-blocks of S have maximal defect. We prove that this is not true. If S is a group of Lie-type, then S has p-blocks of defect zero, by ([10], Theorem 5.1). If $S \cong A_{n}$, then S has again a p-block of defect zero in the case $p \geq 5$, by ([4], Corollary 1). In the case that $p=3$ there exists a p-block of defect $d \leq \frac{a-1}{2}$, by ($[1]$, Theorem 2), except $S=A_{7}$. But A_{7} has a 3 -block of defect 1 . If S is sporadic, then S has a p-block of defect zero, by ([4], Corollary 2) unless $p=3$ and $S \cong S u z$ or $S=C o_{3}$. In the two exceptional cases there exists a 3 -block of defect 1. Thus S must be cyclic of order p and G is an extension of an elementary abelian p group by an elementary abelian p-group. Clearly $N=G^{\prime}$, since N is a minimal normal
subgroup and G is not abelian, by Lemma 3.2. Furthermore, since the action of the p-group G / N on the p-group N is irreducible, we get $|N|=p$. Since N is the unique minimal normal subgroup of G, we see that $Z(G)=N$ or $N<Z(G)$ and $|Z(G)|=p^{2}$. Thus we have to consider the following two cases:
(a) $G^{\prime}=\Phi(G)=Z(G)$, i.e., G is extraspecial,
(b) $G^{\prime}=\Phi(G)<Z(G)$ and $|Z(G)|=p^{2}$. (Such groups exist.)

First we consider the case (a): If $\chi \in \operatorname{Irr}(G)$ with $\chi(1) \neq 1$, then there exists $\mu \in$ $\operatorname{Irr}(A)$ such that $\chi=\mu^{G}$ where A is a maximal normal subgroup of G and $\lambda=\left.\mu\right|_{N} \neq 1_{N}$ (see [6], Kap. V, Satz 16.14)).

It follows that

$$
\nu_{p}(\chi)=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{p}\right)=\frac{1}{|G|} \sum_{g \in G} \chi(1) \lambda\left(g^{p}\right)=\frac{\chi(1)}{|G|}\left(\left|G_{p}\right|+\sum_{g \in G, \operatorname{ord}(g)=p^{2}} \lambda\left(g^{p}\right)\right)
$$

By assumption, we have $\nu_{p}(\chi)<0$, which forces that $\sum_{\substack{g \in G \\ \operatorname{ord}(g)=p^{2}}} \lambda\left(g^{p}\right)$ is a real negative number and

$$
\left|\sum_{\substack{g \in G \\ \operatorname{ord}(g)=p^{2}}} \lambda\left(g^{p}\right)\right|>\left|G_{p}\right|
$$

Since G^{\prime} is cyclic and $p>2, G$ is a regular p-group, by ([6], Kap. III, Satz 10.2). In particular, $\Omega_{1}(G)=\left\{g \in G \mid g^{p}=1\right\}$, by ([6], Kap. III, Hauptsatz 10.8). It follows

$$
\begin{aligned}
\left|\Omega_{1}(G)\right|=\left|G_{p}\right| & <\left|\sum_{\substack{g \in G \\
\operatorname{ood}(g)=p^{2}}} \lambda\left(g^{p}\right)\right| \leq \sum_{g \in G \backslash \Omega_{1}(G)}\left|\lambda\left(g^{p}\right)\right| \leq\left|G / \Omega_{1}(G)\right| \\
& =\left|\Omega_{2}(G) / \Omega_{1}(G)\right| \leq\left|\Omega_{1}(G) / \Omega_{0}(G)\right|=\left|\Omega_{1}(G)\right|-1
\end{aligned}
$$

where the last inequality comes from ([6], Kap. III, Satz 10.7). Thus we have a contradiction.

Dealing with the case (b), we choose $\lambda \in \operatorname{Irr}(Z(G))$ with $\left.\lambda\right|_{N} \neq 1_{N}$. By ([6], Kap. V, Satz 6.3), the character λ has an extension μ to a maximal normal abelian subgroup A of G. Note that not all irreducible constituents of μ^{G} can be linear since otherwise N is in the kernel of μ^{G}. Thus, there exists a non-linear irreducible constituent χ of μ^{G} and we may argue as in (a) for χ to get the final contradiction.

References

[1] X. Chen, J.P. Cossey, M.L. Lewis and H.P. Tong-Viet, Blocks of small defect in alternating groups and squares of Brauer character degrees, Group Theory 20 (2017), 1155-1173.
[2] R. Gow, B. Huppert, R. Knörr, O. Manz and W. Willems, Representation theory in arbitrary characteristic, CIRM, Casa Editrice Dott. Antonio Milani 1993.
[3] R. Gow and W. Willems, Quadratic geometries, projective modules, and idempotents, J. Algebra 160 (1993), 257-272.
[4] A. Granville and K. Ono, Defect zero p-blocks for finite simple groups, TAMS 348 (1996), 331-347.
[5] I.M. Isaacs, Character Theory of Finite Groups, New York, 1994.
[6] B. Huppert, Endliche Gruppen, Springer Verlag, Berlin/Heidelberg/New York 1967.
[7] X. Liu, Y. Wang and H. Wei, Notes on the conjugacy classes of finite groups, J. Pure Appl.Algebra 196 (2005), 111-117.
[8] O. Manz and T. Wolf, Representations of solvable groups, London Math. Soc. Lecture Note Series 185, Cambridge Uni. Press, 1993.
[9] C. Martínez-Pérez and W. Willems, Involutions, cohomology and metabolic spaces, J. Algebra 327 (2011), 4445-4451.
[10] G.O. Michler, A finite simple group of Lie type has p-blocks of different defects, $p \neq 2$, J. Algebra 104 (1986), 220-230.
[11] J. Murray, Strongly real 2-blocks and the Frobenius-Schur indicator, Osaka J. Math. 43 (2006), 201-213.
[12] J. Murray, Projective modules and involutions, J. Algebra 299 (2006), 616-622.
[13] J. Murray, Projective indecomposable modules, Scott modules and the FrobeniusSchur indicator, J. Algebra (2) 311 (2007), 800-816.
[14] J. Murray, Components of the involution module in blocks with a cyclic or Kleinfour defect group, J. Group Theory (1) 11 (2008), 43-62.
[15] G. Navarro, Characters and Blocks of finite groups, London Mathematical Society Lecture Note Series 250, Cambridge University Press, Cambridge, 1998.
[16] D. Quillen, The Adams conjecture, Topology 10 (1970), 67-80.
[17] Y. Ren, On the p-length of p-regular classes and the p-structure of finite groups, Algebra Colloq. 2 (1995), 3-10.
[18] G.R. Robinson, The Frobenius-Schur Indicator and Projective modules, J.Algebra 126 (1989), 252-257.
[19] J.G.Thompson, Finite groups which appear as GalL/K, where $K \subseteq Q\left(\mu_{n}\right)$. In Group Theory, Beijing 1984 (ed. Tuan Hsio-Fu), pp. 210-230, Lecture Notes in Mathematics 1185, Springer, Berlin.
[20] Y. Tsushima, On the weakly regular p-blocks with respect to $\mathrm{O}_{p^{\prime}}(G)$, Osaka J.Math 14 (1977), 465-470.
[21] W. Willems, Metrische Moduln über Gruppenringen, Thesis, Johannes Gutenberg Universität, Mainz 1976.
[22] W. Willems, Gruppen, deren nichtlineare Charaktere von symplektischen Typ sind, Archiv der Math. 29 (1977), 383-384.
[23] W. Willems, Duality and forms in representation theoy, in: Representation Theory of finite groups and finite-dimensional algebras, Birkhäuser, Basel, 1991, 509-520.

