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1. Introduction

Throughout the paper p is always a prime and G a finite group. Let
|G|p′ denote the p′-part of |G| and

Gp′ = {g | g ∈ G, g is a p′-element}
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the set of p-regular elements in G. By IBrp(G) and IBrp(B) we denote
the set of irreducible p-Brauer characters of G, resp. of a p-block B
of G with respect to a sufficiently large field K of characteristic p.
Moreover, by CB we always denote the Cartan matrix of a p-block B.

Let l(B) = | IBrp(B)|, k(B) = | IrrC(B)| and let B0 be the principal
p-block of G.

In [14], Murai conjectured that always l(B0) ≤
|Gp′ |
|G|p′

.

As Maurai carried out in his paper, an affirmative answer has many
interesting consequences. For instance, Brauer’s conjecture k(B) ≤
|D|, where D is the defect group of B, holds for principal p-blocks
([14], Proposition 1.2). In particular, Brauer’s conjecture holds true
for any p-block of a p-solvable group ([14], Proposition 1.3).

To be brief we put m(G) = mp(G) =
|Gp′ |
|G|p′

. Note that p ∤ mp(G), by

([6], Lemma 15.14).

Proposition 1.1. If P ∈ Sylp(G), then

m(G) ≡ m(NG(P )) ̸≡ 0 mod p.

Proof. We may assume thatN = NG(P ) < G and proceed by induction
on the order |G| of G. Suppose that Z ≤ Z(G) is a p-group. By ([14],
Lemma 2.1), we have m(G) ≥ m(G/Z). On the other hand, a direct
calculation shows that m(G/Z) ≥ m(G). Hence m(G/Z) = m(G). So
we may assume that Z(G) is a p′-group.

Let {xi | i ∈ I} ⊆ P be a complete set of representatives of the con-
jugacy classes in G consisting of p-elements. Then, by ([14], Formula
(1.2.2)), we have

0 ≡ |G|p =
∑

i
|G|p

|CG(xi)|p
m (CG (xi))

≡ m(G) +
∑

1̸=xi∈Z(P ) m (CG (xi)) mod p.

Similarly, let {yj | j ∈ J} ⊂ P be a complete set of representatives
of the conjugacy classes in N consisting of p-elements. Then

0 ≡ |N |p ≡ m(N) +
∑

1̸=yj∈Z(P ) m (CN (yj))mod p.

An application of Burnside’s Lemma ([19], Lemma 10.20) shows that
Z(N) is a p′-group and that those xi and yj in Z(P ) can actually be
chosen to be the same. Thus

m(G) +
∑

1̸=xi∈Z(P )

m (CG (xi)) ≡ m(N) +
∑

1 ̸=xi∈Z(P )

m (CN (xi))mod p.
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Note that

P ≤ CN(xi) = N ∩ CG(xi) = NCG(xi)(P ).

Hence, by induction, we get

m(CN(xi)) = m(NCG(xi)(P )) ≡ m(CG(xi)) mod p,

from which the assertion follows.
□

2. A generalization of Murai’s conjecture.

Let B be a p-block of G. For {β1, β2, . . . , βl} = IBrp(B) we put

γij = ⟨βi, βj⟩◦ =
1

|G|
∑
x∈Gp′

βi(x)βj(x
−1).

Note that ΓB = (γij) is the inverse of the Cartan matrix CB of B ([4],
Chap. IV, Lemma 3.7). If B = B0 is the principal block, then β1 = 1G
will always denote the trivial Brauer character.

Lemma 2.1. We have γ11|G|p = m(G).

Proof. This follows immediately by

γ11 = ⟨1G, 1G⟩◦ =
1

|G|
∑
x∈Gp′

1G(x) =
|Gp′ |
|G|

.

□

Example 2.2. Now let G = SL(2, 5) and p = 2. Then the principal
2-block B0 of G has 3 irreducible Brauer characters, and

CB0 =

 8 4 4
4 4 2
4 2 4


(see for instance ([6], Example 13.9)). For its inverse one easily com-
putes

C−1
B0

=

 3
8

−1
4

−1
4

−1
4

1
2

0

−1
4

0 1
2

 .

Thus, by Lemma 2.1, we have

l(B0) = 3 =
3

8
· 8 = γ11|G|2 = m2(G) = m(G).
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Let pa(β) denote the Hilbert divisor of β ∈ IBrp(G) (for the definition
and facts on Hilbert divisors we refer to [11]). If IBr2(G) = {1G =
β1, β2, β3}, then a(β1) = 3 and a(βi) = 2 for i = 2, 3. Thus

γii2
a(βi) =

1

2
· 4 = 2 < l(B0)

for i = 2, 3. However, in general γββ · pa(β) < l(B) for a(β) < d, where
d is the defect of B, does not always hold true.

Note that, by the proof of ([11], Theorem 2.1 a)), we always have
pa(β)γββ ∈ N for β ∈ IBrp(G). Based on many examples we conjecture
the following.

Conjecture 2.3. Let B be a p-block of defect d. Then

l(B) ≤ pdγββ

for all β ∈ IBrp(B).

Conjecture 2.3 means that if B0 is the principal p-block, then

l(B0) ≤ |G|pγ11 = mp(G)

by Lemma 2.1. So this is Murai’s conjecture. Furthermore, by Example
2.2, we have |G|2γ22 = |G|2γ33 = 23 · 1

2
= 4 > l(B0) = 3.

Question 2.4. We may ask here the question: Is there always a β ∈
IBrp(B) with γββ ≤ 1?

Suppose that β ∈ IBrp(B) is liftable to χ ∈ Irr(B). Then

1 = ⟨χ, χ⟩ = γβ,β +
1

|G|
∑

g p-singular

χ(g)χ(g).

Since both parts are real and non-negative, we get γβ,β ≤ 1. Thus, in
this case (in particular, ifG is p-solvable or ifB is principal), Conjecture
2.3 implies l(B) ≤ |D|.

Remark 2.5. In general, the smallest value pdγββ is not always reached
by a height zero character β. As an example the non-principal 2-block
of A9 of defect 3 may serve. It has 3 irreducible Brauer characters, say
βi of degree 8, 48 and 160 and of height 0, 1 resp. 2. The corresponding
Hilbert divisors are 8, 4, 2. One easily computes that 23γβiβi

= 5, 4, 8.

We would like to mention here that Malle and Robinson conjectured
in [12] the upper bound

l(B) ≤ ps(B),

where s(B) denotes the sectional p-rank of a defect group of B.
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For lower bound of l(B), in [8] Holm and the second author asked
the question whether l(B) ≥ trCB

pd
always holds true, where tr stands

for the trace. In [16] Navarro and Sambale presented as counterex-
amples the principal 2-block of Sz(32).5 and PSp4(4).4. However, for
p-solvable groups, we have indeed l(B) ≥ trCB

pd
, since cββ ≤ pd for

β ∈ IBrp(B), by [7].

Proposition 2.6. Let G be a p-solvable group and let B be a p-block
of G with defect d. Then trCB = l(B)pd if and only if l(B) = 1.

Proof. The assertion is clear if l(B) = 1. Now suppose that l(B) > 1
and ∑

β∈IBrp(B)

cββ = l(B)pd.

This forces cββ = pd for all β, since cββ ≤ pd. By ([11], Lemma 2.8),
there exists β ∈ IBrp(B) such that cββ < pa(β) ≤ pd, a contradiction.

□

For the reader’s convenience we recall a result on positive definite
symmetric matrices which seems to be well known.

Lemma 2.7. Let A = (aij)1≤i,j≤l be a positive definite symmetric ma-
trix over the real numbers of type (l, l). Then

detA ≤
l∏

i=1

aii.

Proof. We may assume that l ≥ 2. Let

A =

(
A1 v
vt all

)
where v = (a1l, a2l, . . . , a(l−1)l)

t and A1 is of type (l− 1, l− 1). Since A
is positive definite, A1 as a principal minor of A is positive definite as
well. In particular, detA1 > 0 and A1 is invertible. Hence

detA = detA1 · det
(

E A−1
1 v

vt all

)

= detA1 · det
(

E A−1
1 v

0 all − vtA−1
1 v

)
= (detA1)(all − vtA−1

1 v).

Now vtA−1
1 v ≥ 0, since A1 is positive definite. Thus detA ≤ (detA1)all

and by an inductive argument we obtain the assertion. □
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Corollary 2.8. Let B be a p-block of G with Cartan matrix CB =
(cαβ), where α, β ∈ IBrp(B). Then detCB ≤

∏
β∈IBrp(B) cββ.

Proof. Since CB is positive definite ([10], Lemma 2.3), we may apply
Lemma 2.7. □

Theorem 2.9. Let B be a p-block of defect d. Then trC−1
B ≥ l(B)

pd
with

equality if and only if l(B) = 1.

Proof. Let C = CB. The first statement follows by

pd trC−1 =
∑

β∈IBrp(B)

pdγββ ≥
∑

β∈IBrp(B)

1 = l(B),

since pdγββ ∈ N.
Clearly, if l(B) = 1, then trC−1 = l(B)

pd
. For the converse, we write

l = l(B) and denote by pd1 , . . . , pdl the elementary divisors of C, where
d1 ≤ · · · ≤ dl−1 < dl (for the last inequality, see ([4], Chap. IV,
Theorem 4.16)). Thus det(C) = pd1 · · · pdl . As already mentioned, we
furthermore have pdγββ ∈ N.

Suppose that trC−1 = l(B)
pd

. Thus γββ = 1
pd

for all 1 ≤ i ≤ l.

Note that C−1 is also positive definite. Thus, by Lemma 2.7, we get
det(C−1) ≤ ( 1

pd
)l. However, this is not possible unless l = 1, since

det(C−1) =
∏l

i=1
1
pdi

. This finishes the proof. □

Observe that an affirmative answer of Conjecture 2.3 will provide a
new lower bound for trC−1

B .

Remark 2.10. If Conjecture 2.3 holds true, then trC−1
B ≥ l(B)2

pd
, since

pdγββ ∈ N for all β ∈ IBrp(B).

Clearly, trC−1
B ≥ ρ(C−1

B ) where ρ(C−1
B ) denotes the Frobenius eigen-

value of C−1
B . Thus we may ask whether

ρ(C−1
B ) ≥ l(B)

pd

which is equivalent to

µ(CB)l(B) ≤ pd,

where µ(CB) is the smallest eigenvalue of CB. Note that there are
examples in which ρ(CB) ̸≤ l(B)pd as shown in [16].
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Examples 2.11. a) Let p = 2 and G = PSL(2, 8) so that the inverse
of the Cartan matrix of the principal 2-block is

7/8 −1/4 −1/4 −1/4 −1/2 −1/2 −1/2
−1/4 3/2 −1/2 −1/2 1 −1 0
−1/4 −1/2 3/2 −1/2 0 1 −1
−1/4 −1/2 −1/2 3/2 −1 0 1
−1/2 1 0 −1 2 0 0
−1/2 −1 1 0 0 2 0
−1/2 0 −1 1 0 0 2


.

Conjecture 2.3 leads to l(B0) ≤ 7 since γii =
7
8
, 3/2 or 2. According

to the Malle-Robinson conjecture we only get l(B0) ≤ 8. Actually
l(B0) = 7.
b) Let G = A4 and p = 2. For the principal 2-block we have

l(B0) = 3 and pdγii = 4 · 3
4
= 3

for all i. Thus the bound in Conjecture 2.3 is reached for all i. Note
that the Malle-Robinson conjecture only leads to l(B0) ≤ 4.
c) Let B be a p-block of defect d ≥ 2 with cyclic defect group and
suppose that the Brauer tree is a star with exceptional vertex in the

center. Let e = l(B) ≥ 2 and m = pd−1
e

. For all i we have in this case

γiip
d = (e− 1)m+ 1 = pd −m =

e− 1

e
pd +

1

e
>

e− 1

e
pd ≥ pd

2
≥ p,

since e, d ≥ 2. Note that the sectional p-rank of a cyclic p-group is one.
Thus the Malle-Robinson conjecture is stronger than our Conjecture
2.3.

3. Relations between the Cartan matrix and its inverse

Recall that the Schur product of matrices, denoted by ∗, is defined
as the componentwise multiplication, i.e., if A = (aij) and B = (bij),
then A ∗ B = (aijbij). Now let CB = (cαβ)α,β∈IBrp(B) be the Cartan
matrix of a p-block B with l = l(B). To be brief we put C = CB in
this section. Since C and C−1 are positive definite, we get that C ∗C−1

is positive definite as well by the Schur product theorem ([9], Theorem
5.2.1). If Il denotes the identity matrix of degree l, then we have the
following.

Theorem 3.1. C ∗C−1 − Il is positive semidefinite; i.e., C ∗C−1 ⪰ Il
in the positive semidefinite partial order.

Proof. By ([9], Theorem 5.4.3), the smallest eigenvalue of C ∗C−1 is 1.
Since C ∗ C−1 is positive definite, the assertion follows. □
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Corollary 3.2. For any β ∈ IBrp(B) we have cββγββ ≥ 1 with equality
if and only if l(B) = 1. In particular, tr (C ∗ C−1) ≥ l(B).

Proof. Let x = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is at position β. By
Theorem 3.1, we get

cββγββ = x(C ∗ C−1)xt ≥ xIlx
t = ⟨x, x⟩ = 1.

Suppose that cββγββ = 1. Since pa(β)γββ ∈ N, we get pa(β) = ncββ for
some n ∈ N.

Clearly, if l(B) = 1, then cββγββ = 1. To see the converse, suppose
that l := l(B) ≥ 2. In the following we use C and C1 in Lemma 2.7
instead of A and A1. Since γll =

detC1

detC
and detC = detC1(cll−vtC−1

1 v),
we have

cllγll = cll ·
detC1

detC1

(
cll − vtC−1

1 v
) =

cll

cll − vtC−1
1 v

> 1.

(Note that in the proof of Lemma 2.7, we have v ̸= 0 by the indecom-
posability of C which follows from the fact that B is a p-block of G.
Since C1 is positive definite, vtC1v > 0.) □

Clearly, if m(G) ≥ tr (C ∗ C−1) for the principal block of G, then
Murai’s conjecture holds true for G. Unfortunately, there are examples,
even with a cyclic defect group, with m(G) ≤ tr (C ∗ C−1). As an
example the group S4 for p = 3 may serve. Actually, m3(S4) = 2 and
tr(C ∗ C−1) = 8

3
.

Corollary 3.3. If 1 = 1G is the trivial character, then

c11 ≥
|G|
|Gp′|

=
|G|p
m(G)

with equality if and only if G is p-nilpotent.

Proof. By Corollary 3.2, we have c11 ≥ 1
γ11

. Lemma 2.1 shows that

γ11 =
|Gp′ |

|G|p′ |G|p =
|Gp′ |
|G| . Thus c11 ≥

|G|
|Gp′ |

.

Suppose that c11 = |G|
|Gp′ |

. Since c11γ11 = 1, l(B0) = 1 by Corollary

3.2. Hence G is p-nilpotent, by ([15], Chap. V, Theorem 8.3). Since
the converse is obvious, we are done. □

4. Some evidence for Conjecture 2.3

In this section we show some evidence for the conjecture.

Remark 4.1. Conjecture 2.3 has an affirmative answer if l(B) = 1. In
this case the Cartan matrix of B is CB = pd where d is the defect of B,
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since detCB is the product of elementary divisors. Thus γββ · pd = 1
for IBrp(B) = {β}, and Conjecture 2.3 holds.

Proposition 4.2. Let B be a p-block with a cyclic defect group. Then
Conjecture 2.3 holds true.

Proof. By ([4], Chap. VII, Lemma 10.11) we immediately get

l(B) = min
z∈Zl(B)

zpdC−1zt ≤ zip
dC−1zti = pdγii,

where C is the Cartan matrix of B, d is the defect of B and zi =
(0, . . . , 0, 1, 0, . . . , 0) with the i-th position 1 and 0 elsewhere. □

Note that the proof of Proposition 4.2 also shows that Murai’s con-
jecture has an affirmative answer if the Sylow p-subgroup is cyclic.

Proposition 4.3. If B is a 2-block of G having a dihedral, a semidi-
hedral or a generalized quaternion group as defect group D, then Con-
jecture 2.3 holds true.

Proof. Note that B is a block of tame representation type, and the
Cartan matrices of such blocks are known by the classification of Erd-
mann [2]. In particular l(B) ≤ 3. According to Remark 4.1 we may
assume that l(B) ≥ 2. Then the occurring matrices are listed in [8]. If
l(B) = 2, then B has a Cartan matrix C of the form(

4k 2k
2k k + r

)
with natural numbers k and r, where {k, r} = {1, |D|

4
} or {k, r} =

{2, |D|
4
}. Note that |D| ≥ 8, since a block with Klein four defect group

cannot have two simple modules. We have detC = 4kr. One easily
computes γ11 =

k+r
4kr

, γ22 =
1
r
. Then in the first case, we have

γ11|D| = k + r = 1 +
|D|
4

≥ 3 and γ22|D| = 1

r
|D| ≥ 4,

and in the second case we have

γ11|D| = k + r

2
= 1 +

|D|
8

≥ 2 and γ22|D| = 1

r
|D| ≥ 4.

Hence we are done for Cartan matrices of blocks B with l(B) = 2.
One of the Cartan matrices for l(B) = 3 is

C =

 4k 2k 2k
2k k + a k
2k k k + a

 ,
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where k = |D|
4

and a ∈ {1, 2}. Then detC = a2|D| and γ11|D| = 2k+a
a

,

γ22|D| = γ33|D| = 4k
a
. If a = 1 then

γ11|D| = 2k + 1 ≥ 5 and γ22|D| = γ33|D| = 4k = |D| ≥ 8,

and if a = 2 then

γ11|D| = k + 1 ≥ 3 and γ22|D| = γ33|D| = 2k =
|D|
2

≥ 4.

The remaining cases listed in [8] can be handled in the same way. □

Remark 4.4. We do not intend to prove Conjecture 2.3 or Murai’s
conjecture for p-blocks of p-solvable groups, since both of their proofs
seem more difficult than that of the famous k(GV )-problem (which
consists of the work of a series of authors, and was verified affirmatively,
but needed a period of more than forty years (see [5])).

5. Murai’s conjecture for Sn and An

In this section, we prove that Murai’s conjecture holds true for sym-
metric and alternating groups. We start with a result of Babai, Pálfy
and Saxl on the proportion of p-regular elements in the alternating
group An.

Theorem 5.1. Let p be a prime number, n ≥ 3 an integer and w =
⌊n/p⌋. Then the proportion of p-regular elements in the alternating
group An is given by the following formulas:

(a) if p = 2:

2

(
1− 1

p

)(
1− 1

2p

)
· · ·

(
1− 1

wp

)
;

(b) if p > 2 and n ≡ 0 or 1 (mod p):(
1− 1

p

)(
1− 1

2p

)
· · ·

(
1− 1

wp

)
+ (−1)w

wp

(
1 + 1

p

)(
1 + 1

2p

)
· · ·

(
1 + 1

(w−1)p

)
;

(c) if p > 2 and n ̸≡ 0 or 1 (mod p):(
1− 1

p

)(
1− 1

2p

)
· · ·

(
1− 1

wp

)
.

Proof. This is ([1], Theorem 2.1). □

For integers s, t ≥ 1 let k(s, t) be the number of s-tuples (λ1, . . . , λs)
of partitions λi such that

∑s
i=1 |λi| = t. In particular, k(1, t) is the

number of partitions of t.
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Lemma 5.2 (Olsson). Let s, t ≥ 1. Then k(s, t) < (s+1)t. If moreover
s ≥ 2, then k(s, t) ≤ st unless s = 2 and t ≤ 6.

Proof. This is ([12], Lemma 5.1). □

Lemma 5.3. Let p be an odd prime number and w′ ≥ 2. Then pw
′−1 ≥

6w′ unless
(i) p = 5, 7, 11 and w′ = 2, or
(ii) p = 3 and w′ = 2, 3.

Proof. Suppose that p ≥ 13. For w′ = 2, it is clear that pw
′−1 ≥ 13 >

12 = 6w′. By induction on w′, we have

pw
′−1 = p · pw′−2 ≥ p · 6(w′ − 1) > 6w′,

and so the lemma holds for p ≥ 13 and w′ ≥ 2. For either p = 5, 7, 11
and w′ ≥ 3, or p = 3 and w′ ≥ 4, the lemma similarly holds by
induction on w′, which finishes the proof. □

Proposition 5.4. Let G be the symmetric group Sn or the alternating
group An. Then G satisfies Murai’s conjecture for any prime p.

Proof. Denote by B0 the principal p-block of G. Write n = wp+r with
0 ≤ r < p. We may assume that n ≥ 5, since for n ≤ 4 the assertion is
well known to be true, and can be verified easily.

We first let G = Sn. In this case, by ([18], Proposition 11.14) we have
ℓ(B0) = k(p− 1, w). Note that the proportion of p-regular elements in
G has been obtained by Erdős and Turán ([3], Lemma I) as

|Gp′ |
|G|

=

(
1− 1

p

)(
1− 1

2p

)
· · ·

(
1− 1

wp

)
.

Furthermore we have

|G|p = p⌊
n
p⌋+

⌊
n
p2

⌋
+
⌊

n
p3

⌋
+··· ≥ pw · p

⌊
n
p2

⌋
+
⌊

n
p3

⌋
+···

.

Hence, for p > 3 or p = 3 and w > 6, we have

mp(G) =
|Gp′ |
|G| · |G|p ≥

(
1− 1

p

)
· · ·

(
1− 1

wp

)
· pw

= (p− 1)
(
p− 1

2

)
· · ·

(
p− 1

w

)
≥ (p− 1)w

≥ k(p− 1, w) (by Lemma 5.2)
= l(B0).

Similarly, for p = 2 and w ≥ 4, we have

m2(G) ≥
[(
1− 1

2

) (
1− 1

4

)
· · ·

(
1− 1

2w

)
· 2w

]
· 2⌊

n
22
⌋+⌊ n

23
⌋ (∗)

≥
(
3
2

)w−1 · 2w
2
+1

> 2w ≥ k(1, w) = l(B0).
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The small cases where either p = 2 and w ≤ 3 or p = 3 and w ≤ 6 can
be checked directly with MOC [13] and the formula (∗)

mp(Sn) =

(
1− 1

p

)(
1− 1

2p

)
· · ·

(
1− 1

wp

)
|Sn|p.

Doing this, note that mp(Sn) and l(B0) do not depend on the rest
r = n− pw. Consequently we only have to check the cases
(1) p = 2, w ≤ 3 and n = 6 and
(2) p = 3, w ≤ 6 and n = 6, 9, 12, 15 and 18.
In the case (1) we have l(B0) = 3 < m2(S6) = 5.
In the cases (2) we obtain for
n = 6: l(B0) = 5 = m3(S6),
n = 9: l(B0) = 10 < 40 = m3(S9),
n = 12: l(B0) = 20 < 110 = m3(S12),
n = 15: l(B0) = 36 < 308 = m3(S15),
n = 18: l(B0) = 65 < 2618 = m3(S18).

We now let G = An. It is well known that any p-block of Sn is para-
meterized by its p-core (i.e., the p-core of a partition of n corresponding
to an irreducible character of the block) and its weight (see [18]). We

write B̃0 for the principal p-block of Sn and µ(B̃0) for the p-core of B̃0.
Suppose that p = 2. By Theorem 5.1, we get m2(An) = m2(Sn). If

we assume that n ≥ 16, then by adding the factor ⌊ n
24
⌋ in the above

formula (∗) we get

m2(An) ≥ 2w+1 ≥ 2(k(1, w)) ≥ l(B0),

since by [18, Proposition 12.9], we have

l(B0) =

{
k(1, w) if w is odd

k(1, w) + k(1, w′) if w = 2w′.

It remains to check seperately the cases n = 6, 8, 10, 12 and 14. Note
that l(B0(A2m)) = l(B0(A2m+1)) and m2(A2m) = m2(A2m+1). Here we
get for
n = 6 : l(B0) = 3 and m2(A6) = 5,
n = 8 : l(B0) = 7 and m2(A8) = 35,
n = 10 : l(B0) = 7 and m2(A10) = 63,
n = 12 : l(B0) = 14 and m2(A12) = 231,
n = 14 : l(B0) = 15 and m2(A14) = 429.

Finally, we suppose that p is odd. If µ(B̃0) is not self-conjugate, then

n ̸≡ 0 or 1 (mod p) and l(B0) = l(B̃0) = k(p−1, w) by ([18], Proposition
12.8 (i)). Furthermore, the proportion of p-regular elements is the same
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as for the corresponding symmetric group, by Theorem 5.1 (c). Thus
the result follows as for Sn.

So we may assume that µ(B̃0) is self-conjugate and the weight w of

B̃0 is positive. In particular, n ≡ 0 or 1 ( mod p). By ([17], Proposition
2.13) or ([18], Proposition 12.8 (ii)), we get

l(B0) =

{
1
2
k(p− 1, w) if w is odd,

1
2

(
k(p− 1, w) + 3k

(
1
2
(p− 1), w′)) if w = 2w′.

We first suppose that w is odd. Since (p− 1)(2p− 1) · · · (wp− 1) ≥
2(p+ 1)(2p+ 1) · · · ((w − 1)p+ 1), we have

1

2

(
1− 1

p

)
· · ·

(
1− 1

wp

)
≥ 1

wp

(
1 +

1

p

)
· · ·

(
1 +

1

(w − 1)p

)
.

Hence, by Theorem 5.1 (b), we get similar as for Sn

mp(G) ≥ 1

2

(
1− 1

p

)
· · ·

(
1− 1

wp

)
· pw

≥ 1

2
(p− 1)w

≥ 1

2
k(p− 1, w) = l(B0) (by the latter part of Lemma 5.2)

except possibly p = 3 and w = 3, 5. For these cases we have
n = 9, 10: l(B0) = 5 and m3(A9) = m3(A10) = 26,
n = 15, 16: l(B0) = 18 and m3(A15) = m3(A16) = 217.

Thus we are left with the case that w is even. If w = 2, then by
Theorem 5.1 (b),

mp(G) ≥
[(

1− 1

p

)(
1− 1

2p

)
+

1

2p

(
1 +

1

p

)]
· p2

= (p− 1)

(
p− 1

2

)
+

1

2
(p+ 1) = p2 − p+ 1

and

l(B0) =
1

2

[
k(p− 1, 2) + 3k

(
p− 1

2
, 1

)]
=

1

2

[
2(p− 1) +

(p− 1)(p− 2)

2

]
+

3

4
(p− 1) (by [18, (3.11)])

=
p2

4
+ p− 5

4
.
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Hence we obtain mp(G) ≥ l(B0).

So we may finally assume that w = 2w′ ≥ 4. By Theorem 5.1 (b),

the proportion
|(An)p′ |
|An| of p-regular elements in the alternating group An

is(
1− 1

p

)(
1− 1

2p

)
· · ·

(
1− 1

wp

)
+

1

wp

(
1 +

1

p

)(
1 +

1

2p

)
· · ·

(
1 +

1

(w − 1)p

)
.

Since |An|p = |Sn|p ≥ pw, we get as for Sn

mp(An) ≥ k(p− 1, w) +
1

w
(p+ 1)(p+

1

2
) · · · (p+ 1

w − 1
).

So we are done if

1

w
(p+ 1)(p+

1

2
) · · · (p+ 1

w − 1
) ≥ 3k(

p− 1

2
, w′).

According to Lemma 5.2 we have
(
p+1
2

)w′
≥ k(p−1

2
, w′). Also, by Lemma

5.3, we have pw
′−1 ≥ 6w′ and so

1

w
(p+ 1) · · · (p+ 1

w − 1
) ≥ 1

2w′p
2w′−1 ≥ 3

(
p+ 1

2

)w′

≥ 3k(
p− 1

2
, w′)

unless (i) p = 5, 7, 11 and w′ = 2; or (ii) p = 3 and w′ = 2, 3.
For the possible exceptions p = 5, 7, 11 and w′ = 2, we also have

1
w
(p+ 1) · · · (p+ 1

w−1
) = 1

4
(p+ 1) · (p+ 1

2
) · (p+ 1

3
)

> 3(p− 1) + 3(p−1)(p−3)
8

= 3k(p−1
2
, 2)

= 3k(p−1
2
, w′),

and so we are done in this case. For p = 3 and w′ = 2, 3, i.e., n =
12, 13, 18 and 19, we get
n = 12, 13 : l(B0) = 13 and m3(A12) = m3(A13) = 145
n = 18, 19 : l(B0) = 37 and m3(A18) = m3(A19) = 3346,
which completes the proof. □

Remark 5.5. In ([12], Proposition 5.2) Malle and Robinson proved
l(B) ≤ pw in the case that B is a p-block of a symmetric group, an
alternating group or their covering groups and w is the weight of B.
If B0 is the principal 2-block of Sn (n ≤ 7), then m2(Sn) ≤ pw. But
m2(S8) = 35 > pw = 24 = 16. If B0 is the principal 3-block of Sn (n ≤
8), then m3(Sn) ≤ pw, but m3(S9) = 40 > pw = 33 = 27.
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