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arbitrary block. We prove that the new conjecture has an affirma-
tive answer for tame blocks and blocks with cyclic defect groups. In
addition we confirm Murai’s conjecture for symmetric and alternating
groups.
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1. INTRODUCTION

Throughout the paper p is always a prime and G a finite group. Let
|G|,y denote the p'-part of |G| and

Gy ={9]9€G,gisap-clement}
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the set of p-regular elements in G. By IBr,(G) and IBr,(B) we denote
the set of irreducible p-Brauer characters of G, resp. of a p-block B
of G with respect to a sufficiently large field K of characteristic p.
Moreover, by Cg we always denote the Cartan matrix of a p-block B.

Let I[(B) = |IBr,(B)|, k(B) = |Irrc(B)| and let By be the principal
p-block of G.

L Gy
In [14], Murai conjectured that always 1(By) < ‘Gp 5

|Gl

As Maurai carried out in his paper, an affirmative answer has many
interesting consequences. For instance, Brauer’s conjecture k(B) <
|D|, where D is the defect group of B, holds for principal p-blocks
([14], Proposition 1.2). In particular, Brauer’s conjecture holds true
for any p-block of a p-solvable group ([14], Proposition 1.3).

To be brief we put m(G) = m,(G) = :gf//‘ Note that p { m,(G), by
([6], Lemma 15.14).
Proposition 1.1. If P € Syl (G), then

m(G) = m(Ng(P)) # 0 mod p.

Proof. We may assume that N = Ng(P) < G and proceed by induction
on the order |G| of G. Suppose that Z < Z(G) is a p-group. By ([14],
Lemma 2.1), we have m(G) > m(G/Z). On the other hand, a direct
calculation shows that m(G/Z) > m(G). Hence m(G/Z) = m(G). So
we may assume that Z(G) is a p/-group.

Let {x; | 1 € I} C P be a complete set of representatives of the con-
jugacy classes in G consisting of p-elements. Then, by ([14], Formula
(1.2.2)), we have

0=1Gl, = >, |cc'f(1‘i m (Ce (i)
= m(G)+ Zl;ézieZ(P) m (Ce (x;)) mod p.

Similarly, let {y; | j € J} C P be a complete set of representatives
of the conjugacy classes in N consisting of p-elements. Then

0= [N[, =m(N)+ 217&%-62(13) m (Cy (y;)) mod p.

An application of Burnside’s Lemma ([19], Lemma 10.20) shows that
Z(N) is a p/-group and that those x; and y; in Z(P) can actually be
chosen to be the same. Thus

m(G) + Z m (Cg (z;)) = m(N) + Z m (Cy (z;)) mod p.

1#z;,€Z(P) 1#z,€Z(P)




A GENERALIZATION OF MURATI'S CONJECTURE 3

Note that
P S CN(JZZ) =NnN Cg(.’BZ) = NCG(%)(P).
Hence, by induction, we get
m(Cn(x:)) = m(Nog @) (P)) = m(Ce(z;)) mod p,

from which the assertion follows.

2. A GENERALIZATION OF MURAI'S CONJECTURE.
Let B be a p-block of GG. For {61,52, ..., 1} = 1Br,(B) we put
<B276] |G| Z Bl /Bj _1).
xEG /

Note that I'g = (;;) is the inverse of the Cartan matrix Cp of B ([4],
Chap. IV, Lemma 3.7). If B = By is the principal block, then 5, = 14
will always denote the trivial Brauer character.

Lemma 2.1. We have 711|G|, = m(G).

Proof. This follows immediately by

111 = (e, 1g)° = Z le(z |G\|
:L‘EG /

O

Example 2.2. Now let G = SL(2,5) and p = 2. Then the principal
2-block By of GG has 3 irreducible Brauer characters, and

8 4 4
Cp,= | 4 4 2
42 4

(see for instance ([6], Example 13.9)). For its inverse one easily com-
putes

O NI =

NI= O =

—1 o
Cp, =

[ Lt [l e el [V

Thus, by Lemma 2.1, we have
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Let p*®) denote the Hilbert divisor of 8 € IBr,(G) (for the definition
and facts on Hilbert divisors we refer to [11]). If IBry(G) = {lg =
b1, B2, B3}, then a(B;) = 3 and a(f;) = 2 for ¢ = 2,3. Thus

1
’yiiQG(Bi) = 5 4 =2< Z(Bo)

for i = 2,3. However, in general 55 - p?@ < [(B) for a(B) < d, where
d is the defect of B, does not always hold true.

Note that, by the proof of ([11], Theorem 2.1 a)), we always have
p*P55 € N for B € IBr,(G). Based on many examples we conjecture
the following.

Conjecture 2.3. Let B be a p-block of defect d. Then

[(B) < p™yss
for all g € IBr,(B).

Conjecture 2.3 means that if By is the principal p-block, then
[(Bo) < |G’p711 = mp<G)

by Lemma 2.1. So this is Murai’s conjecture. Furthermore, by Example
2.2, we have |G|2’722 = |G‘2’}/33 =23. % =4 > l(BQ) = 3.
Question 2.4. We may ask here the question: Is there always a 3 €
IBI‘p(B) with YBB S 1?7
Suppose that 8 € IBr,(B) is liftable to x € Irr(B). Then
1=(x,X) =785+ é > x(9)x(g).
g p-singular

Since both parts are real and non-negative, we get y35 < 1. Thus, in
this case (in particular, if G is p-solvable or if B is principal), Conjecture
2.3 implies I(B) < |D|.

Remark 2.5. In general, the smallest value p?ys5 is not always reached
by a height zero character 8. As an example the non-principal 2-block
of Ag of defect 3 may serve. It has 3 irreducible Brauer characters, say
B; of degree 8,48 and 160 and of height 0, 1 resp. 2. The corresponding
Hilbert divisors are 8,4, 2. One easily computes that 23755 = 5,4, 8.

We would like to mention here that Malle and Robinson conjectured
in [12] the upper bound
(B) <p'?,
where s(B) denotes the sectional p-rank of a defect group of B.
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For lower bound of {(B), in [8] Holm and the second author asked
the question whether [(B) > trp# always holds true, where tr stands

for the trace. In [16] Navarro and Sambale presented as counterex-

amples the principal 2-block of Sz(32).5 and PSp,(4).4. However, for
p-solvable groups, we have indeed I(B) > trp#, since cgs < p? for

B € IBr,(B), by [7].

Proposition 2.6. Let G be a p-solvable group and let B be a p-block
of G with defect d. Then tr Cp = I(B)p® if and only if I((B) = 1.

Proof. The assertion is clear if [(B) = 1. Now suppose that [(B) > 1

and
> s =B
BEIBry,(B)
This forces cgg = p? for all B, since ¢z < p?. By ([11], Lemma 2.8),
there exists 3 € IBr,(B) such that cgz < p?® < p? a contradiction.
O

For the reader’s convenience we recall a result on positive definite
symmetric matrices which seems to be well known.

Lemma 2.7. Let A = (a;j)1<ij<1 be a positive definite symmetric ma-
triz over the real numbers of type (I,1). Then

!
det A S H Qij.

i=1

Proof. We may assume that [ > 2. Let

v aip

where v = (ay, az, . .., ag—1y)" and Ay is of type (I —1,1—1). Since A
is positive definite, A; as a principal minor of A is positive definite as
well. In particular, det A; > 0 and A; is invertible. Hence

1
detA = detAl'det(Et 4 U)
v aj

B E ATl
= det A; - det ( 0 ay— vt ATl )

= (det Ay)(ay — vt A7),

Now vt A7 v > 0, since A; is positive definite. Thus det A < (det A;)ay
and by an inductive argument we obtain the assertion. 0
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Corollary 2.8. Let B be a p-block of G with Cartan matriz Cg =
(cap), where o, B € IBry(B). Then det Cp < [[sep,,(5) o8-

Proof. Since Cp is positive definite ([10], Lemma 2.3), we may apply
Lemma 2.7. ]

Theorem 2.9. Let B be a p-block of defect d. Then tr Cz' > Z;—E) with
equality if and only if [(B) = 1.

Proof. Let C'= Cp. The first statement follows by

pltrOt = Z Py > Z 1=1(B),

B€IBr,(B) B€IBr,(B)

since plyzs € N.
Clearly, if I(B) = 1, then trC~! = ’;—5). For the converse, we write

| = I(B) and denote by p?1, ..., p% the elementary divisors of C, where
di < -+ < diy < d; (for the last inequality, see ([4], Chap. IV,
Theorem 4.16)). Thus det(C) = p? ---p%. As already mentioned, we
furthermore have p?yss € N.

Suppose that trC~! = ’;—5). Thus yz5 = # for all 1 < i < [.
Note that C~! is also positive definite. Thus, by Lemma 2.7, we get
det(C™1) < (I%)l. However, this is not possible unless [ = 1, since

det(C~') = []'_, &-. This finishes the proof. O

i=1 pdi °

Observe that an affirmative answer of Conjecture 2.3 will provide a
new lower bound for tr C5".

Remark 2.10. If Conjecture 2.3 holds true, then tr C5' > l(:;f, since
P55 € N for all 8 € IBr,(B).

Clearly, tr C3' > p(C3z') where p(C3') denotes the Frobenius eigen-
value of Cz'. Thus we may ask whether

which is equivalent to
wCp)U(B) < p”,

where u(Cp) is the smallest eigenvalue of Cgz. Note that there are
examples in which p(Cp) £ I(B)p? as shown in [16].
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Examples 2.11. a) Let p =2 and G = PSL(2,8) so that the inverse
of the Cartan matrix of the principal 2-block is

7/8 —1/4 —1/4 —1/4 —1/2 —1/2 —1/2

~1/4 3/2 —1/2 -1/2 1 -1 0
~1/4 —1/2 3/2 -1/2 0 1 -1
~1/4 —1/2 —-1/2 3/2 -1 0 1
~1/2 1 0o -1 2 0 0
~1/2 -1 1 0 0 2 0
~1/2 0 -1 1 0 0 2

Conjecture 2.3 leads to [(By) < 7 since 7; = £,3/2 or 2. According
to the Malle-Robinson conjecture we only get [(By) < 8. Actually
[(Bo) =T1.

b) Let G = A4 and p = 2. For the principal 2-block we have

3
I(By) = 3 and py; :4.1 =3

for all . Thus the bound in Conjecture 2.3 is reached for all i. Note
that the Malle-Robinson conjecture only leads to [(By) < 4.

¢) Let B be a p-block of defect d > 2 with cyclic defect group and
suppose that the Brauer tree is a star with exceptional vertex in the
center. Let e =I(B) > 2 and m = %. For all i we have in this case

e—1 1 e—1 d
pla=>""pix>
e e 2
since e,d > 2. Note that the sectional p-rank of a cyclic p-group is one.
Thus the Malle-Robinson conjecture is stronger than our Conjecture

2.3.

Yip® = (e—1)m+1=p’—m =

3. RELATIONS BETWEEN THE CARTAN MATRIX AND ITS INVERSE

Recall that the Schur product of matrices, denoted by x, is defined
as the componentwise multiplication, i.e., if A = (a;;) and B = (b;;),
then A x B = (a;;b;;). Now let Cp = (cap)a,seiBr,(B) be the Cartan
matrix of a p-block B with [ = I(B). To be brief we put C' = Cp in
this section. Since C' and C'~! are positive definite, we get that C'«C~!
is positive definite as well by the Schur product theorem ([9], Theorem
5.2.1). If I; denotes the identity matrix of degree [, then we have the
following.

Theorem 3.1. C x C~! — I, is positive semidefinite; i.e., Cx C~1 = I,
in the positive semidefinite partial order.

Proof. By (][9], Theorem 5.4.3), the smallest eigenvalue of C'« C~! is 1.
Since C' * C'~! is positive definite, the assertion follows. 0
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Corollary 3.2. For any 8 € IBr,(B) we have cggyss > 1 with equality
if and only if I(B) = 1. In particular, tr (C'x C~1) > I(B).

Proof. Let x = (0,...,0,1,0,...,0) where the 1 is at position 5. By
Theorem 3.1, we get

cssves = w(C* O™ )2’ > ala’ = (v,2) = 1.

Suppose that cggyss = 1. Since pa(ﬂ)wgg € N, we get p*®) = ncgp for
some n € N.

Clearly, if [(B) = 1, then cggyss = 1. To see the converse, suppose
that [ := [(B) > 2. In the following we use C' and C} in Lemma 2.7

instead of A and A;. Since y; = ‘ile;tccl and det C' = det C (cy —v'C '),
we have

det Cl Cl ~1
cun = e = )
w " det 4 (c” - vthlv) cp — vtC’flv
(Note that in the proof of Lemma 2.7, we have v # 0 by the indecom-
posability of C' which follows from the fact that B is a p-block of G.
Since C} is positive definite, v!Civ > 0.) O

Clearly, if m(G) > tr (C * C1) for the principal block of G, then
Murai’s conjecture holds true for G. Unfortunately, there are examples,
even with a cyclic defect group, with m(G) < tr (C * C™'). As an
example the group Sy for p = 3 may serve. Actually, m3(Ss) = 2 and

tr(C«C™') =2

Corollary 3.3. If 1 = 14 is the trivial character, then
.o l6l _ (Gl
Gyl m(G)
with equality if and only if G is p-nilpotent.

Proof. By Corollary 3.2, we have c;; > ,Y% Lemma 2.1 shows that

|Gp/| IGp/‘ Th |G|
= =S = A us c > .
M= @6, TG 1= 9G]

Suppose that ¢y = % Since ¢11711 = 1, [(By) = 1 by Corollary
P

3.2. Hence G is p-nilpotent, by ([15], Chap. V, Theorem 8.3). Since
the converse is obvious, we are done. O

4. SOME EVIDENCE FOR CONJECTURE 2.3
In this section we show some evidence for the conjecture.

Remark 4.1. Conjecture 2.3 has an affirmative answer if {(B) = 1. In
this case the Cartan matrix of B is Cz = p® where d is the defect of B,
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since det Cp is the product of elementary divisors. Thus vz - p? = 1
for IBr,(B) = {}, and Conjecture 2.3 holds.

Proposition 4.2. Let B be a p-block with a cyclic defect group. Then
Congecture 2.3 holds true.

Proof. By ([4], Chap. VII, Lemma 10.11) we immediately get
I((B) = min zp’C™'2" < zp'C 2] = pyu,

2€7UB)
where C' is the Cartan matrix of B, d is the defect of B and z; =
(0,...,0,1,0,...,0) with the i-th position 1 and 0 elsewhere. O

Note that the proof of Proposition 4.2 also shows that Murai’s con-
jecture has an affirmative answer if the Sylow p-subgroup is cyclic.

Proposition 4.3. If B is a 2-block of G having a dihedral, a semidi-
hedral or a generalized quaternion group as defect group D, then Con-
jecture 2.3 holds true.

Proof. Note that B is a block of tame representation type, and the
Cartan matrices of such blocks are known by the classification of Erd-
mann [2]. In particular [(B) < 3. According to Remark 4.1 we may
assume that [(B) > 2. Then the occurring matrices are listed in [8]. If
[(B) = 2, then B has a Cartan matrix C' of the form

4k 2k
2k k+r
with natural numbers k and r, where {k,r} = {1,%} or {k,r} =

{2, %}. Note that |D| > 8, since a block with Klein four defect group
cannot have two simple modules. We have det C' = 4kr. One easily
computes y;; = %, Yoo = % Then in the first case, we have

D 1
iD=k +r=1+ 2> 3 and gl = LDy 2 4,

and in the second case we have
k-+r
2

Hence we are done for Cartan matrices of blocks B with [(B) = 2.
One of the Cartan matrices for [(B) = 3 is

4k 2k 2k
C=1\| 2tk k+a k ,
2k k k+a

D 1
il =20 =1 P 5 and gl = py 20
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where k = % and a € {1,2}. Then det C = a*|D| and 11| D| = 2t
Ya2|D| = 33| D| = 2. If @ = 1 then
Y11|D| =2k +1 > 5 and 72| D[ = 33| D| = 4k = |D| > 8,
and if @ = 2 then
10|
2
The remaining cases listed in [8] can be handled in the same way. [

’)/11|D| :k+123and ’)/22’D‘ :’)/33|D| =2k = > 4.

Remark 4.4. We do not intend to prove Conjecture 2.3 or Murai’s
conjecture for p-blocks of p-solvable groups, since both of their proofs
seem more difficult than that of the famous k(GV)-problem (which
consists of the work of a series of authors, and was verified affirmatively,
but needed a period of more than forty years (see [5])).

5. MURAI’S CONJECTURE FOR S,, AND A,

In this section, we prove that Murai’s conjecture holds true for sym-
metric and alternating groups. We start with a result of Babai, Palfy
and Saxl on the proportion of p-regular elements in the alternating
group A,.

Theorem 5.1. Let p be a prime number, n > 3 an integer and w =
|n/p|. Then the proportion of p-reqular elements in the alternating
group A, is given by the following formulas:

(a) if p=2:

()03 (3)

(b) if p>2andn=0 orl (mod p):

(=) () (1)
+ EE ) (14 4) - (1 k)

(¢) ifp>2andn#0 orl (mod p):

(1_1> (1_i>...(1_i),
p 2p wp
Proof. This is ([1], Theorem 2.1). O

For integers s,t > 1 let k(s,t) be the number of s-tuples (Aq,...,\s)
of partitions A; such that > 7, |\ = ¢t. In particular, k(1,t) is the
number of partitions of ¢.
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Lemma 5.2 (Olsson). Let s,t > 1. Then k(s,t) < (s+1)'. If moreover
s> 2, then k(s,t) < s unless s =2 and t < 6.

Proof. This is ([12], Lemma 5.1). O

Lemma 5.3. Let p be an odd prime number and w' > 2. Then p*'~' >
6w’ unless

(i) p=>5,7,11 and w' = 2, or

(i) p=3 and w' = 2,3.
Proof. Suppose that p > 13. For w' = 2, it is clear that p¥'~! > 13 >
12 = 6w’. By induction on w’, we have

w'—1

P =p p > p e 6(w — 1) > 6w,

and so the lemma holds for p > 13 and w’ > 2. For either p = 5,7,11
and w' > 3, or p = 3 and w’' > 4, the lemma similarly holds by
induction on w’, which finishes the proof. U

Proposition 5.4. Let G be the symmetric group S, or the alternating
group A,. Then G satisfies Murai’s conjecture for any prime p.

Proof. Denote by By the principal p-block of G. Write n = wp—+r with
0 <r < p. We may assume that n > 5, since for n < 4 the assertion is
well known to be true, and can be verified easily.

We first let G = S,,. In this case, by ([18], Proposition 11.14) we have
{(By) = k(p — 1, w). Note that the proportion of p-regular elements in
G has been obtained by Erdds and Turan ([3], Lemma I) as

—=(1-- 1— — ... (1= —1).
Furthermore we have
Gl = il a3l 5 oLl sl

Hence, for p > 3 or p = 3 and w > 6, we have

s

mp(G):%-|G|p > <1—§>...<1_w%)),pw
= -0l -8
> (p—1)"
> k(p—1,w) (by Lemma 5.2)

Similarly, for p = 2 and w > 4, we have

(@) 2 [(1-3) (1= 1) (1= ) 2] olEllal
> (3 g
> 2% > k(1,w) = I(By)
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The small cases where either p =2 and w < 3 or p =3 and w < 6 can
be checked directly with MOC [13] and the formula (x)

i~ (1-1) (=) (- D)

Doing this, note that m,(S,) and {(By) do not depend on the rest
r =n — pw. Consequently we only have to check the cases

(1) p=2, w <3 and n =6 and

(2)p=3,w<6and n=06,9,12,15 and 18.

In the case (1) we have [(By) = 3 < my(Sg) = 5.

In the cases (2) we obtain for

n = 6: ( 0) —5:m3(S6),

n=29: I(By) =10 < 40 = m3(Sy),

n=12: l( 0) =20< 110 = m3(512>,
n = 15: l( 0) =36 < 308 = m3(515)
n = 18: Z(Bo) = 65 < 2618 = mg(Slg)

We now let G = A,,. It is well known that any p-block of S,, is para-
meterized by its p-core (i.e., the p-core of a partition of n corresponding
to an irreducible character of the block) and its weight (see [18]). We
write B, for the principal p-block of S, and /.L(BO> for the p-core of B.

Suppose that p = 2. By Theorem 5.1, we get ma(A,) = ma(S,). If
we assume that n > 16, then by adding the factor | 5% in the above
formula (%) we get

m2(An) > 2wt > 2(]6(1,10)) > Z(BO)a
since by [18, Proposition 12.9], we have

[(Bo) k(1,w) if w is odd
o E(L,w)+ k(1w if w=2uw.

It remains to check seperately the cases n = 6,8,10,12 and 14. Note
that l(BO(AQm)) = l(Bo(A2m+1)) and mQ(A2m> = mz(A2m+1). Here we
get for

n==6: I(By) =3 and my(As) =5,

n=_8: [(By) =T and my(As) = 35,

n=10: (By) =7 and my(A19) = 63,

n=12: Z(Bo) = 14 and m2<A12) = 231,

n=14: [(By) = 15 and my(A4) = 429.

Finally, we suppose that p is odd. If /L(E()) is not self-conjugate, then
n # 0or 1 (mod p) and I(By) = I(By) = k(p—1,w) by ([18], Proposition
12.8 (i)). Furthermore, the proportion of p-regular elements is the same
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as for the corresponding symmetric group, by Theorem 5.1 (c¢). Thus
the result follows as for S,.

So we may assume that p(By) is self-conjugate and the weight w of
B, is positive. In particular, n = 0 or 1 (mod p). By ([17], Proposition
2.13) or ([18], Proposition 12.8 (ii)), we get

ik(p—1 if w i
1(Bo) = {2k(p , W) if w is odd,

(kP — L)+ 3k (Ao~ Dow)) w2

We first suppose that w is odd. Since (p—1)(2p—1)--- (wp —1) >
20+ 1)(2p+1)--- ((w—1)p+ 1), we have

(D) (220 (o)

Hence, by Theorem 5.1 (b), we get similar as for S,

mp(G>z%(1—$)--.<1_wip).pw

1
> Z(p— 1)
_2(p )

1
> §k(p —1,w) =1(By) (by the latter part of Lemma 5.2)
except possibly p = 3 and w = 3,5. For these cases we have
n=9,10: (By) =5 and m3(Ag) = m3(Ay0) = 26,
n = 15, 16: Z(Bo) = 18 and mg(A15) = mg(A16) = 217.

Thus we are left with the case that w is even. If w = 2, then by
Theorem 5.1 (b),

02 [(-)0-3) 3 )

=(p—1)( —1)+1(p+1)=p2—p+1

2) "2
and
I(By) = % {k(p —1,2) + 3k (E, 1)}
_ % {Q(p— 1) + Ul 1)2<p — 2>] + Z(p —1) (by [18,(3.11)])
p° 5
R
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Hence we obtain m,(G) > [(Bj).

So we may ﬁnally assume that w = 2w’ > 4. By Theorem 5.1 (b),

|(An)

A, ‘ ot p-regular elements in the alternating group A,

the proportion
is

()63 08 Coi)

Since |A,|, = |Snlp > p*, we get as for S,

1) (p_{_w;)‘

my(An) 2 Kp = Lw) + = (0 + 1)+

So we are done if

1 1 1 p—1

- 1 —) > 3k(——,w).

S Dp+g) o+ ) 2 3k(—w)
According to Lemma 5.2 we have (I%l)w > k(22 w'). Also, by Lemma

5.3, we have p¥’~! > 6w’ and so

1 1 1 p+1 p—1

- 1)... > w-l >3 (2 ) >3k !
) ot ) 2 5 3( 5 ) k(P 5 )

unless (i) p=5,7,11 and w’ = 2; or (ii) p =3 and w’ = 2, 3.
For the possible exceptions p = 5,7,11 and w’' = 2, we also have

Lo+ p+25) = 2o+ -p+3) (p+3)

3(p=1)(p—3)
> 3(p-— 1) + %
= 3k(5- 12)
)
and so we are done in this case. For p = 3 and v’ = 2,3, i.e., n =

12,13, 18 and 19, we get

n = 12, 13: Z(Bo) =13 and mg(Alg) = mg(Alg) = 145

n — 18, 19 : Z(Bo) = 37 and mg(Alg) = mg(Alg) = 3346,

which completes the proof. 0

Remark 5.5. In ([12], Proposition 5.2) Malle and Robinson proved
[(B) < p“ in the case that B is a p-block of a symmetric group, an
alternating group or their covering groups and w is the weight of B.
If By is the principal 2-block of S, (n < 7), then m»(S,) < p*. But
mo(Sg) = 35 > p¥ = 21 = 16. If By is the principal 3-block of S, (n <
8), then m3(S,) < p¥, but ms(Sy) = 40 > p¥ = 33 = 27.
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