AuTOMORPHISMS OF ORDER $2 p$ IN BINARY SELF-DUAL EXTREMAL CODES OF LENGTH A MULTIPLE OF 24

Martino Borello
Università degli Studi di Milano Bicocca
Milano, Italy
m.borello1@campus.unimib.it

Wolfgang Willems
Otto-von-Guericke Universität,
Magdeburg, Germany,
willems@ovgu.de

Version of September 22, 2012, printed September 26, 2012

Abstract

Let C be a binary self-dual code with an automorphism g of order $2 p$, where p is an odd prime, such that g^{p} is a fixed point free involution. If C is extremal of length a multiple of 24 all the involutions are fixed point free, except the Golay Code and eventually putative codes of length 120. Connecting module theoretical properties of a self-dual code C with coding theoretical ones of the subcode $C\left(g^{p}\right)$ which consists of the set of fixed points of g^{p}, we prove that C is a projective $\mathbb{F}_{2}\langle g\rangle$-module if and only if a natural projection of $C\left(g^{p}\right)$ is a self-dual code. We then discuss easy to handle criteria to decide if C is projective or not. As an application we consider in the last part extremal self-dual codes of length 120, proving that their automorphism group does not contain elements of order 38 and 58.

Key Words: self-dual codes, automorphism group

1 Introduction

Binary self-dual extremal codes of length a multiple of 24 are binary self-dual codes with parameters $[24 m, 12 m, 4 m+4]$. They are interesting for various algebraic and geometric reasons; for example, they are doubly even [14] and all codewords of a fixed given nontrivial weight support a 5 -design [1]. Very few is
known about this family of codes: for $m=1$ we have the Golay Code \mathcal{G}_{24} and for $m=2$ there is the extended quadratic residue code $X Q R_{48}$, but no other examples are known so far.

A classical way of approaching the study of such codes is through the investigation of their automorphism group. In this paper we focus our attention to automorphisms of order $2 p$, where p is an odd prime. There are elements of this type in the automorphism group of \mathcal{G}_{24} and $X Q R_{48}$, while it was recently proved [2] that for $m=3$ no automorphisms of order $2 p$ occur. The problem is totally open for $m>3$. It is known [5] that for $m \notin\{1,5\}$ the involutions are fixed point free. So we will restrict our study to those automorphisms g of order $2 p$ whose p-power acts fixed point freely.

In the first part of the paper we connect module theoretical properties of a self-dual code C with coding theoretical ones of the subcode $C\left(g^{p}\right)$ which consists of the fixed points of g^{p}. More precisely, we prove in Theorem 1 that C is a projective $\mathbb{F}_{2}\langle g\rangle$-module if and only if a natural projection of $C\left(g^{p}\right)$ is a self-dual code. In the second part, i.e. section 4, we apply these results to the case $m=5$. In particular we prove that there are no automorphisms of order $2 \cdot 19$ and $2 \cdot 29$. All computations of the last part are carried out with Magma [6].

2 Preliminaries

From now on a code always means a binary linear code and K always denotes the field \mathbb{F}_{2} with two elements.
Let C be a code and let $g \in \operatorname{Aut}(C)$. We denote by

$$
C(g)=\left\{c \in C \mid c^{g}=c\right\}
$$

the subcode of C consisting of all codewords which are fixed by g. It is easy to see that a codeword $c=\left(c_{1}, \ldots, c_{n}\right)$ is fixed by g if and only if $c_{i}=c_{i}$ for every $i \in\{1, \ldots, n\}$, i.e., if and only if c is constant on the orbits of g.
Definition 1. For an odd prime p let $s(p)$ denote the smallest $s \in \mathbb{N}$ such that $p \mid 2^{s}-1$. Note that $s(p)$ is the multiplicative order of 2 in \mathbb{F}_{p}^{*}.

The next lemma is a well-known fact in modular representation theory. For the basics in this theory (and only those are need in this article) the reader is referred to chapter VII of [12].
Lemma 1. Let $\nu=\frac{p-1}{s(p)}$, where p is an odd prime, and let $G=\langle g\rangle$. If g is of order $2 p$ then we have.
a) There are $1+\nu$ irreducible $K G$-modules $V_{0}, V_{1}, \ldots, V_{\nu}$, where $V_{0}=K$ (the trivial module) and $\operatorname{dim} V_{i}=s(p)$ for $i \in\{1, \ldots, \nu\}$.
b) For $i=0, \ldots, \nu$ the projective indecomposable cover W_{i} of V_{i}, called a PIM, is a nonsplit extension $W_{i}=\begin{aligned} & V_{i} \\ & V_{i}\end{aligned}$ of V_{i} by V_{i}. Furthermore,

$$
K G=W_{0} \oplus W_{1} \oplus \ldots \oplus W_{\nu}
$$

In order to understand codes with automorphisms of order $2 p$ we need the following result which improves Proposition 3.1 of [13].

Proposition 1. Let $G=\langle g\rangle$ be a cyclic group of odd prime order p.
a) If $s(p)$ is even, then all irreducible $K G$-modules are self-dual.
b) If $s(p)$ is odd, then the trivial module is the only self-dual irreducible $K G$ module.

Proof. a) Let $s(p)=2 t$ and let $E=\mathbb{F}_{2^{2 t}}$ be the extension field of $K=\mathbb{F}_{2}$ of degree $2 t$. Furthermore, let W be an irreducible nontrivial $K G$-module. In particular, W has dimension $2 t$. By Theorem 1.18 and Lemma 1.15 in Chap. VII of [12], we have

$$
\begin{equation*}
W \otimes_{K} E=\oplus_{\alpha \in \operatorname{Gal}(E / K)} V^{\alpha} \tag{1}
\end{equation*}
$$

where V is an irreducible $K G$-module and V^{α} is the α-conjugate module of V. Since $p \mid\left(2^{t}+1\right)\left(2^{t}-1\right)$ we get $p \mid 2^{t}+1$. Clearly, $\operatorname{Gal}(\mathrm{E} / \mathrm{K})$ consists of all automorphisms of the form $x \mapsto x^{k}$ where $0 \leq k \leq 2 t-1$.

If $V=\langle v\rangle$ then $v g=\epsilon v$ where ϵ is a nontrivial p-th root of unity in E. Since $p \mid 2^{t}+1$ we obtain $\epsilon^{2^{t}+1}=1$, hence $\epsilon^{2^{t}}=\epsilon^{-1}$. Thus there is an $\alpha \in \operatorname{Gal}(E / K)$ such that

$$
V^{*} \cong V^{\alpha}
$$

and equation (1) implies $W \cong W^{*}$.
b) Now let $s(p)=t$ be odd. As above the irreducible module W is self-dual if and only if $V \cong V^{\alpha}$ for some $\alpha \in \operatorname{Gal}\left(\mathbb{F}_{2^{t}} / K\right)$, or equivalently if and only if $\epsilon^{\alpha}=\epsilon^{-1}$. Suppose that such an α exists. Then we may write $\epsilon^{\alpha}=\epsilon^{2^{k}}$ where $0 \leq k \leq t-1$. Hence $\epsilon^{2^{k}}=\epsilon^{-1}$ for some $0 \leq k \leq t-1$ and therefore $2^{k} \equiv-1 \bmod p$. Now $2^{2 k} \equiv 1 \bmod p$ forces $t \mid 2 k$. Since t is odd we get $t \mid k \leq t-1$, a contradiction.

Remark 1. According to Lemma 3.5 in [13] we have $s(p)$ even if $p \equiv \pm 3 \bmod 8$ and $s(p)$ odd if $p \equiv-1 \bmod 8$.

Remark 2. Since $K G \cong K G^{*}$, Lemma 1 and Proposition 1 imply the following.
a) If $s(p)$ is even, then

$$
K G=W_{0} \oplus W_{1} \oplus \ldots \oplus W_{\nu}
$$

with $W_{i} \cong W_{i}^{*}$ for all $i \in\{0, \ldots, \nu\}$.
b) If $s(p)$ is odd, then ν is even (put $\nu=2 t$) and

$$
K G=W_{0} \oplus W_{1} \oplus \ldots \oplus W_{2 t}
$$

with $W_{0} \cong W_{0}^{*}$ and $W_{i} \cong W_{2 i}^{*}$ for all $i \in\{1, \ldots, t\}$.

3 Automorphisms of order $2 p$ in self-dual codes

Throughout this section let C be a self-dual code of length n. In particular n is even. Suppose that $g \in \operatorname{Aut}(C)$ is of order $2 p$, where p is an odd prime. Furthermore suppose that the involution $h=g^{p}$ acts fix point freely on the n coordinates. Without loss of generality, we may assume that $h=g^{p}=$ $(1,2)(3,4) \ldots(n-1, n)$.

We consider the maps $\pi=\pi_{2}: C(h) \rightarrow K^{\frac{n}{2}}$, where

$$
\left(c_{1}, c_{1}, c_{2}, c_{2}, \ldots, c_{\frac{n}{2}}, c_{\frac{n}{2}}\right) \stackrel{\pi}{\mapsto}\left(c_{1}, c_{2}, \ldots, c_{\frac{n}{2}}\right),
$$

and $\phi: C \rightarrow K^{\frac{n}{2}}$, where

$$
\left(c_{1}, c_{2}, \ldots, c_{n-1}, c_{n}\right) \stackrel{\phi}{\mapsto}\left(c_{1}+c_{2}, \ldots, c_{n-1}+c_{n}\right) .
$$

According to Theorem 1 of [3] we have

$$
\phi(C) \subseteq \pi(C(h))=\phi(C)^{\perp}
$$

In particular,

$$
\left.\phi(C)=\pi(C(h))=\phi(C)^{\perp} \quad \text { (i.e. } \pi(C(h)) \text { is self-dual }\right)
$$

if and only if

$$
\operatorname{dim} \pi(C(h))=\operatorname{dim} C(h)=\frac{n}{4}
$$

Theorem 1. The code C is a projective $K\langle g\rangle$-module if and only if $\pi(C(h))$ is a self-dual code.

Proof. First note that for an arbitrary finite group G a $K G$-module is projective if and only if its restriction to a Sylow 2-subgroup is projective ([12], Chap. VII, Theorem 7.14). Thus we have to consider the restriction $C_{\left.\left.\right|_{\langle h\rangle}\right\rangle}$, i.e., C with the action of $\langle h\rangle$. As a $K\langle h\rangle$-module we may write

$$
C \cong \underbrace{R \oplus \ldots \oplus R}_{a \text { times }} \oplus \underbrace{K \oplus \ldots \oplus K}_{\frac{n}{2}-2 a \text { times }},
$$

where R is the regular $K\langle h\rangle$-module and K is the trivial one. If $\operatorname{soc}(C)$ denotes the socle of C, i.e. the largest completely reducible $K\langle h\rangle$-submodule of C, then

$$
C(h)=\operatorname{soc}(C)=\underbrace{K \oplus \ldots \oplus K}_{a \text { times }} \oplus \underbrace{K \oplus \ldots \oplus K}_{\frac{n}{2}-2 a \text { times }} \cong K^{\frac{n}{2}-a} .
$$

Thus C is projective if and only if $\frac{n}{2}-2 a=0$, hence if and only if $a=\frac{n}{4}$. This happens if and only if $\operatorname{dim} C(h)=\frac{n}{4}$. This is equivalent to the fact that $\pi(C(h))$ is self-dual.

Remark 3. If $n \equiv 2 \bmod 4$, then $\pi(C(h)) \subseteq K^{\frac{n}{2}}$ can not be self-dual, since $\frac{n}{2}$ is odd.

Remark 4. In \mathcal{G}_{24} and $X Q R_{48}$ the subcodes fixed by fixed point free acting involutions have self-dual projections. Thus we wonder if this holds true for all extremal self-dual codes of length a multiple of 24 .

Next we deduce some properties of C related to the action of the automorphism g of order $2 p$. This may help to decide whether $\pi(C(h))$ is self-dual or not. For completeness we treat both cases $n \equiv 2 \bmod 4$ and $n \equiv 0 \bmod 4$.

Since h acts fixed point freely, g has $x 2 p$-cycles and $w 2$-cycles, with

$$
\begin{equation*}
n=2 p x+2 w . \tag{2}
\end{equation*}
$$

Thus, as a $K\langle g\rangle$-module, we have the decomposition

$$
K^{n}=\underbrace{K\langle g\rangle \oplus \ldots \oplus K\langle g\rangle}_{x \text { times }} \oplus \underbrace{K\langle h\rangle \oplus \ldots \oplus K\langle h\rangle}_{w \text { times }} .
$$

Using Lemma 1 and $V_{0} \cong K$, we get

$$
K^{n}=\underbrace{\begin{array}{l}
V_{0} \\
V_{0}
\end{array} \ldots \oplus \begin{array}{l}
V_{0} \\
V_{0}
\end{array}}_{x+w \text { times }} \oplus \ldots \oplus \underbrace{\begin{array}{l}
V_{\nu} \\
V_{\nu}
\end{array} \ldots \oplus \begin{array}{l}
V_{\nu} \\
V_{\nu}
\end{array}}_{x \text { times }} .
$$

The action of $\langle g\rangle$ on K^{n} and the self-duality of C restrict the possibilities for C as a subspace of K^{n}.

More precisely, we have
Proposition 2. As a $K\langle g\rangle$-module the code C has the following structure.

$$
\begin{aligned}
C= & \underbrace{\begin{array}{l}
V_{0} \\
V_{0}
\end{array} \ldots \oplus V_{0}^{V_{0}} V_{0}}_{y_{0} \text { times }} \oplus \underbrace{V_{0} \oplus \ldots \oplus V_{0}}_{z_{0} \text { times }} \oplus \ldots \\
& \ldots \oplus \underbrace{\begin{array}{c}
V_{\nu} \\
V_{\nu} \oplus \ldots \oplus \begin{array}{c}
V_{\nu} \\
V_{\nu}
\end{array}
\end{array} \underbrace{V_{\nu} \oplus \ldots \oplus V_{\nu}}_{z_{\nu}}}_{y_{\nu} \text { times }},
\end{aligned}
$$

where

1) $2 y_{0}+z_{0}=x+w$,

2a) $2 y_{i}+z_{i}=x$ for all $i \in\{1, \ldots, \nu\}$, if $s(p)$ is even,
2b) $z_{i}=z_{2 i}$ and $y_{i}+y_{2 i}+z_{i}=x$ for all $i \in\{1, \ldots, t\}$, if $s(p)$ is odd.

Proof. Since $C=C^{\perp}$ we see by a proof similar to that of Proposition 2.3 in [15] that $K^{n} / C \cong C^{*}$. The conditions on the multiplicities are an easy consequence of this fact. Let us prove, for example, part 2 b): if

$$
\begin{gathered}
C=\ldots \oplus \underbrace{\begin{array}{l}
V_{i} \\
V_{i}
\end{array} \ldots \oplus V_{i}^{V_{i}}}_{y_{i} \text { times }} \oplus \underbrace{V_{i} \oplus \ldots \oplus V_{i}}_{z_{i} \text { times }} \oplus \ldots \\
\end{gathered}+\underbrace{\begin{array}{l}
V_{2 i} \\
V_{2 i} \oplus \ldots \oplus V_{2 i} \\
V_{2 i}
\end{array}}_{y_{2 i} \text { times }} \oplus \underbrace{V_{2 i} \oplus \ldots \oplus V_{2 i}}_{z_{2 i}} \oplus \ldots,
$$

then

$$
\begin{aligned}
K^{n} / C & =\ldots \oplus \underbrace{\begin{array}{l}
V_{i} \\
V_{i}
\end{array} \ldots \oplus V_{i}}_{x-z_{i}-y_{i} \text { times }} V_{i}
\end{aligned} \underbrace{V_{i} \oplus \ldots \oplus V_{i}}_{z_{i} \text { times }} \oplus \ldots . \underbrace{}_{x-z_{2 i}-y_{2 i} \text { times }} \oplus \ldots \underbrace{\begin{array}{l}
V_{2 i} \\
V_{2 i} \oplus \ldots \oplus V_{2 i}
\end{array}}_{z_{2 i}} \oplus \underbrace{V_{2 i} \oplus \ldots \oplus V_{2 i}}_{2 i} \oplus \ldots .
$$

and since $V_{i} \cong V_{2 i}^{*}$,

$$
\begin{aligned}
C^{*}= & \ldots \oplus \underbrace{\begin{array}{l}
V_{2 i} \\
V_{2 i}
\end{array} \ldots \oplus V_{2 i}^{V_{2 i}}}_{y_{i} \text { times }} \oplus \underbrace{V_{2 i} \oplus \ldots \oplus V_{2 i}}_{z_{i} \text { times }} \oplus \ldots \\
& \ldots \oplus \underbrace{\begin{array}{l}
V_{i} \\
V_{i}
\end{array} \ldots \oplus V_{i}}_{y_{2 i} \text { times }} \oplus
\end{aligned} \underbrace{V_{i} \oplus \ldots \oplus V_{i}}_{z_{2 i}} \oplus \ldots . .
$$

Thus $z_{i}=z_{2 i}$ and $x-z_{i}-y_{i}=y_{2 i}$.
Proposition 2 implies that

$$
\begin{equation*}
\phi(C)^{\perp}=\pi(C(h))=\pi(\bigoplus_{i=0}^{\nu} \underbrace{V_{i} \oplus \ldots \oplus V_{i}}_{y_{i}+z_{i} \text { times }}) . \tag{3}
\end{equation*}
$$

Since ker $\phi=C(h)$, we furthermore have

$$
\phi(C) \cong C / \operatorname{ker} \phi \cong \bigoplus_{i=0}^{\nu} \underbrace{V_{i} \oplus \ldots \oplus V_{i}}_{y_{i} \text { times }}
$$

which leads to

$$
\phi(C)^{\perp} / \phi(C) \cong \bigoplus_{i=0}^{\nu} \underbrace{V_{i} \oplus \ldots \oplus V_{i}}_{z_{i} \text { times }}
$$

Taking dimensions we get

$$
\begin{equation*}
\operatorname{dim} \phi(C)^{\perp} / \phi(C)=z_{0}+s(p)\left(\sum_{i=1}^{\nu} z_{i}\right) \tag{4}
\end{equation*}
$$

Proposition 3. With the notations used in Proposition 2 we have
a) $x \equiv w \bmod 2$, if $n \equiv 0 \bmod 4$,
b) $x \not \equiv w \bmod 2$, if $n \equiv 2 \bmod 4$.

Furthermore, if $s(p)$ is even, then

$$
x \equiv z_{1} \equiv \ldots \equiv z_{\nu} \bmod 2
$$

Proof. a) and b) follow immediately from (2). The last fact is a consequence of $2 y_{i}+z_{i}=x$, if $s(p)$ is even, which is stated in Proposition 2.

Corollary 1.

a) $\phi(C)^{\perp} / \phi(C)$ is of even dimension, if $n \equiv 0 \bmod 4$,
b) $\phi(C)^{\perp} / \phi(C)$ is of odd dimension, if $n \equiv 2 \bmod 4$.

Proof. First note that $s(p) \sum_{i=1}^{\nu} z_{i} \equiv 0 \bmod 2$ whatever the parity of $s(p)$ is. In case $s(p)$ odd this follows from $z_{i}=z_{2 i}$ for $i \in\{1, \ldots, 2 t=\nu\}$ (see Proposition 2). Furthermore, $z_{0} \equiv x+w \bmod 2$, hence z_{0} even, if $4 \mid n$, and z_{0} odd, if $n \equiv 2 \bmod 4$, according to Proposition 3. Thus (4) yields

$$
\operatorname{dim} \phi(C)^{\perp} / \phi(C) \equiv z_{0} \equiv 0 \bmod 2, \text { if } n \equiv 0 \bmod 4
$$

and

$$
\operatorname{dim} \phi(C)^{\perp} / \phi(C) \equiv z_{0} \equiv 1 \bmod 2, \text { if } n \equiv 2 \bmod 4
$$

Corollary 2. Let $n \equiv 0 \bmod 4$ and let $s(p)$ be even. If w is odd, then

$$
\operatorname{dim} C(h)=\operatorname{dim} \pi(C(h)) \geq \frac{n}{4}+\frac{s(p) \nu}{2}=\frac{n}{4}+\frac{p-1}{2} .
$$

In particular, $\phi(C)<\phi(C)^{\perp}$.
Proof. By Lemma 2, the condition $4 \mid n$ forces that w and x have the same parity. Thus w odd implies that x is odd and by Proposition 2, we get $z_{i} \geq 1$ for $i=1, \ldots \nu$. Therefore, according to (4),

$$
\operatorname{dim} C(h)=\operatorname{dim} \pi(C(h)) \geq \frac{n}{4}+\frac{s(p) \nu}{2}=\frac{n}{4}+\frac{p-1}{2} .
$$

Remark 5. We may ask whether the converse of Corollary 2 holds true; i.e., does $\phi(C)<\phi(C)^{\perp}$ always implies that w is odd? This is not true. For instance, there exist self-dual $[36,18,8]$ codes and automorphisms of order 6 (note that $s_{2}(3)$ is even) for which $\pi(C(h))$ is not self-dual, but w is even.

Corollary 3. Let $n \equiv 0 \bmod 4$ and let $s(p)$ be even. If g has an odd number of cycles of order 2 , then C is not projective as a $K\langle g\rangle$-module.

Proof. If the number of 2-cycles of g is odd, then w is odd. Thus, by Corollary 2 and Theorem 1, the assertion follows.

Let us introduce a notation about the structure of the automorphisms.
Definition 2. We say that an automorphism of prime order p of a code is of type p - (α, β) if it has αp-cycles and β fixed points. Furthermore an automorphism of order $2 p$ is of type $2 p$ - $(\alpha, \beta, \gamma ; \delta)$ if it has $\alpha 2$-cycles, βp-cycles, $\gamma 2 p$-cycles and δ fixed points.

Since $\operatorname{Aut}(C) \leq \mathcal{S}_{n}$, the largest possible prime which may occur as the order of an automorphism of a self-dual code of length n is $p=n-1$. If $n \equiv 0 \bmod 8$, then $s(p)$ is odd. Obviously, in this case we can not have an automorphism of order $2 p$.

Let C be an extremal self-dual code of length $n \geq 48$. According to Theorem 7 in [4] an automorphism of type p - (α, β) with $p>5$ satisfies $\alpha \geq \beta$. Hence the second largest possible prime p satisfies $n=2 p+2$.

Corollary 4. Let C be a self-dual code of length $n=2 p+2$, where p is an odd prime, and minimum distance greater than 4. Suppose that involutions in $\operatorname{Aut}(C)$ are fixed point free. If $s(p)$ is even, then $\operatorname{Aut}(C)$ does not contain an element of order $2 p$.
In case C is doubly even, the condition $s(p)$ even may be replaced by condition $p \not \equiv-1 \bmod 8$.

Proof. Suppose that g is an automorphism of order $2 p$. Thus g has a cycle of length $2 p$ and one of length 2 . As above let $h=g^{p}$. By Corollary 2 , we get

$$
\operatorname{dim} \pi(C(h)) \geq \frac{n}{4}+\frac{p-1}{2}=p .
$$

Since $\pi(C(h)) \leq K^{\frac{n}{2}}=K^{p+1}$, we see that $\pi(C(h))$ has minimum distance 1 or 2 , a contradiction.

In case that C is doubly even we only have to show that $p \equiv 1 \bmod 8$ does not occur (see Remark 1). If $p \equiv 1 \bmod 8$ then $n=2 p+2 \equiv 4 \bmod 8$, contradicting the Theorem of Gleason (see [11], Theorem Corollary 9.2.2).

Corollary 5. Let C be an extremal self-dual code of length $n=24 m$. Let $g \in \operatorname{Aut}(C)$ be an element of type $2 p-(w, 0, x ; 0)$. If $s(p)$ is even and w is odd, then $p \leq \frac{n}{4}-1$.

Proof. By Corollary 2, $\pi(C(h))$ has parameters $\left[12 m, \geq 6 m+\frac{p-1}{2}, \geq 2 m+2\right]$. According to the Griesmer bound (see [11], Theorem 2.7.4), we have

$$
12 m \geq \sum_{i=0}^{6 m+\frac{p-1}{2}-1}\left\lceil\frac{2 m+2}{2^{i}}\right\rceil \geq(2 m+2)+(m+1)+\left(6 m+\frac{p-1}{2}\right)-2 .
$$

This implies $p \leq 6 m-1=\frac{n}{4}-1$.
Clearly, the estimation in Corollary 5 is very crude for m large. For instance, if $m=5$ the statement in Corollary 5 leads to $p \leq 29$, but computing all terms in the sum shows that even $p \leq 23$.

4 Application to extremal self-dual codes of length 120

From now on C is supposed to be a self-dual $[120,60,24]$ code. The following (see [7]) is the state of art about the automorphisms of C.

Automorphisms of odd prime order which may occur in $\operatorname{Aut}(C)$ are of type $29-(4,4), 23-(5,5), 19-(6,6), 7-(17,1), 5-(24,0)$ or $3-(40,0)$. Automorphisms of order 2 can only be of type $2-(48,24)$ or $2-(60,0)$. Automorphisms of possible composite odd order are of type $3 \cdot 5-(0,0,8 ; 0), 3 \cdot 19-(2,0,2 ; 0)$ or $5 \cdot 23-(1,0,1 ; 0)$.

Thus we may ask about elements $g \in \operatorname{Aut}(C)$ of order $2 p$ where p is an odd prime. Note that the involution $h=g^{p}$ has no or exactly 24 fixed points, by [5].

Lemma 2. If the involution h has no fixed points, then g is of type

- $2 \cdot 29-(2,0,2 ; 0)$,
- $2 \cdot 19-(3,0,3 ; 0)$,
- $2 \cdot 5-(0,0,12 ; 0)$,
- or $2 \cdot 3-(0,0,20 ; 0)$.

If h has 24 fixed points then g is of type

- $2 \cdot 23-(2,1,2 ; 1)$,
- or $2 \cdot 3-(0,8,16 ; 0)$.

Note that $\operatorname{Aut}(C)$ does not contain elements of order $2 \cdot 7$.
Proof. The proof is straightforward by considering the cycle-structures using [7].

The above cycle structures show that only elements of order $2 \cdot 19$ satisfy the hypothesis of Corollary 2. In this case $s(19)$ is even and so we have

$$
\operatorname{dim} C\left(g^{19}\right) \geq \frac{120}{4}+\frac{19-1}{2}=39
$$

Thus $\pi_{2}\left(C\left(g^{19}\right)\right)$ is a $[60, \geq 39, \geq 12]$ code. According to Grassl's list [8] a $[60, \geq 39]$ code has minimum distance at most 10 . Therefore we can state the following.

Proposition 4. The automorphism group of an extremal self-dual [120, 60, 24] code does not contain elements of order 38 .

Next we consider automorphisms of order 58. By Lemma 2, we know that g is of type $2 \cdot 29-(2,0,2 ; 0)$. Therefore g^{2} is of type 29- $(4,4)$ and g^{29} is of type $2-(60,2)$. Thus, without loss of generality, we may assume that

$$
g^{2}=(1, \ldots, 29)(30, \ldots, 58)(59, \ldots, 87)(88, \ldots, 116)
$$

and

$$
g^{29}=(1,30)(2,31) \ldots(59,88)(60,89) \ldots(117,118)(119,120)
$$

If $\pi_{29}: C\left(g^{2}\right) \rightarrow \mathbb{F}_{2}^{8}$ is defined by

$$
\left(v_{1}, \ldots, v_{120}\right) \mapsto\left(v_{1}, v_{30}, v_{59}, v_{88}, v_{117}, v_{118}, v_{119}, v_{120}\right)
$$

then $\pi_{29}\left(C\left(g^{2}\right)\right)$ is a self-dual $[8,4]$ code according to [10]. and clearly, the minimum distance must be greater or equal to 4 since C is doubly-even. It is well-known that, up to equivalence, the only code with such parameters is the extended Hamming code $\hat{\mathcal{H}}_{3}$.

According to Lemma 1 the structure of the ambient space K^{120}, viewed as a module for the group $\langle g\rangle$, is as follows:

$$
K^{120}=\begin{array}{cccc}
K & K & K & K \\
K & K & K & K
\end{array} \oplus \begin{array}{cc}
V & V \\
V & V
\end{array}
$$

where $\operatorname{dim} V=28$. Since $C\left(g^{2}\right)$ has dimension 4, the code $C(g)=\left(C\left(g^{2}\right)\right)\left(g^{29}\right)$ has dimension at least 2. By calculations we verify that

$$
\operatorname{dim}\left(\left(\pi_{29}^{-1}(A)\right)(g)\right) \leq 2
$$

for every $A \in \hat{\mathcal{H}}_{3}^{\mathcal{S}_{8}}$, which denotes the set of all self-dual [8,4,4] codes. Note that there are only a few computations since $\left|\hat{\mathcal{H}}_{3}^{\mathcal{S}_{8}}\right|=\frac{\left|\mathcal{S}_{\mathcal{S}}\right|}{\left|\operatorname{Aut}\left(\hat{\mathcal{H}}_{3}\right)\right|}=30$. Thus $\operatorname{dim} C(g)=2$ and there are only two possible structures for C, namely
a) $\quad C=\begin{array}{ll}K & K \\ K & K\end{array} \oplus V \oplus V$ or
b)

Next we look at $C\left(g^{29}\right)$ which may be written as $C\left(g^{29}\right)=B \otimes\langle(1,1)\rangle$, where $B=\pi_{2}\left(C\left(g^{29}\right)\right)$ is a $[60, \geq 30, \geq 12]$ code. In case a) we have $\operatorname{dim} B=58$, a contradiction. Thus case b) occurs. According to Theorem 1, C is projective and B is a self-dual $[60,30,12]$ code. Furthermore B has an automorphism of type 29-(2,2).

Proposition 5. Every self-dual $[60,30,12]$ code B with an automorphism of type 29-(2,2) is bordered double-circulant. There are (up to equivalence) three such codes.

Proof. We can easily determine the submodule of B fixed by the given automorphism and then do an exhaustive search with Magma on its complement in K^{60} (following the methods described in [10] and considering the complement as a vector space over $\mathbb{F}_{2^{28}}$). In fact, it turns out that B is equivalent to one of the three bordered double-circulant singly-even codes of length 60 classified by Harada, Gulliver and Kaneta in [9].

It is computationally easy to check that there are exactly 14 conjugacy classes of elements of type 29-(2,2) in $\operatorname{Aut}(B)$ for each of the three possiblities for B.

Using this we are able to do an exhaustive search for C along the methods used in [2]. Without repeating all the details, we just recall the two main steps of the search. First we determine a set, say \mathcal{L}, such that there exists a $t \in \mathcal{S}_{120}$ and $L \in \mathcal{L}$ such that $\left(C\left(g^{2}\right)+C\left(g^{29}\right)\right)^{t}=L$ and $g^{t}=g$. It turns out that $|\mathcal{L}|=42$. In the second step we construct all possible codes C from the knowledge of its socle as in section VI of [2]. By checking the minimum distance we see that in all cases the codes are not extremal which proves the following.

Proposition 6. The automorphism group of an extremal self-dual [120, 60, 24] code does not contain elements of order 58 .

Acknowledgment. The first author likes to express his gratitude to his supervisors F. Dalla Volta and M. Sala. Both authors are indepted to the Laboratorio di Matematica Industriale e Crittografia at Milano and the Institut für Algebra and Geometrie at Magdeburg for hospitality and excellent working conditions, while this paper has mainly been written.

References

[1] E. F. Assmuss, H.F. Mattson, New 5-designs, J. Combin. Theory 6 (1969) 122-151.
[2] M. Borello, The automorphism group of a self-dual [72, 36, 16] binary code does not contain elements of order 6, to appear IEEE Trans. Inform. Theory.
[3] S. Bouyuklieva, A method for constructing self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory 46, No. 2 (2000), 496-504.
[4] S. Bouyuklieva, A. Malevich and W. Willems, Automorphisms of extremal codes, IEEE Trans. Inform. Theory 56 (2010), 2091-2096.
[5] S. Bouyuklieva, On the automorphisms of order 2 with fixed points for the extremal self-dual codes of length 24 , Des. Codes Cryptogr. 25 (2002) 5-13.
[6] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbol. Comput. 24 (1997) 235-265.
[7] J. de la Cruz, Über die Automorphismengruppe extremaler Codes der Längen 96 und 120, PhD thesis, Otto-von-Guericke University Magdeburg.
[8] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, online available at www.codetables.de, accessed on 2012-09-15
[9] M. Harada, T.A. Gulliver and H. Kaneta, Classification of extremal doublecirculant self-dual codes of length up to 62, Discrete Mathematics 188 (1998), 127-136.
[10] W.C. Huffman, Automorphisms of codes with application to extremal doubly even codes of length 48, IEEE Trans. Inform. Theory 28 (1982), 511-521.
[11] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, 2003.
[12] B. Huppert and N. Blackburn, Finite Groups II, Springer 1982.
[13] C. Martínez-Pérez and W. Willems, Self-dual codes and modules of finite groups in characteristic two, IEEE Trans. Inform. Theory 50 (2004), 67-78.
[14] E.M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44 (1998), 134-139.
[15] W. Willems, A note on self-dual group codes, IEEE Trans. Inform. Theory 48 (2002), 3107-3109.

