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Abstract

Let C be a binary self-dual code with an automorphism g of order 2p,
where p is an odd prime, such that gp is a fixed point free involution.

If C is extremal of length a multiple of 24 all the involutions are fixed

point free, except the Golay Code and eventually putative codes of length

120. Connecting module theoretical properties of a self-dual code C with

coding theoretical ones of the subcode C(gp) which consists of the set of

fixed points of gp, we prove that C is a projective F2〈g〉-module if and only

if a natural projection of C(gp) is a self-dual code. We then discuss easy

to handle criteria to decide if C is projective or not. As an application we

consider in the last part extremal self-dual codes of length 120, proving

that their automorphism group does not contain elements of order 38 and

58.
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1 Introduction

Binary self-dual extremal codes of length a multiple of 24 are binary self-dual
codes with parameters [24m, 12m, 4m + 4]. They are interesting for various
algebraic and geometric reasons; for example, they are doubly even [14] and all
codewords of a fixed given nontrivial weight support a 5-design [1]. Very few is
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known about this family of codes: for m = 1 we have the Golay Code G24 and
for m = 2 there is the extended quadratic residue code XQR48, but no other
examples are known so far.

A classical way of approaching the study of such codes is through the inve-
stigation of their automorphism group. In this paper we focus our attention to
automorphisms of order 2p, where p is an odd prime. There are elements of
this type in the automorphism group of G24 and XQR48, while it was recently
proved [2] that for m = 3 no automorphisms of order 2p occur. The problem
is totally open for m > 3. It is known [5] that for m 6∈ {1, 5} the involutions
are fixed point free. So we will restrict our study to those automorphisms g of
order 2p whose p-power acts fixed point freely.

In the first part of the paper we connect module theoretical properties of
a self-dual code C with coding theoretical ones of the subcode C(gp) which
consists of the fixed points of gp. More precisely, we prove in Theorem 1 that
C is a projective F2〈g〉-module if and only if a natural projection of C(gp) is a
self-dual code. In the second part, i.e. section 4, we apply these results to the
case m = 5. In particular we prove that there are no automorphisms of order
2 · 19 and 2 · 29. All computations of the last part are carried out with Magma

[6].

2 Preliminaries

From now on a code always means a binary linear code and K always denotes
the field F2 with two elements.
Let C be a code and let g ∈ Aut(C). We denote by

C(g) = {c ∈ C | cg = c}

the subcode of C consisting of all codewords which are fixed by g. It is easy to
see that a codeword c = (c1, . . . , cn) is fixed by g if and only if ci = cig for every
i ∈ {1, . . . , n}, i.e., if and only if c is constant on the orbits of g.

Definition 1. For an odd prime p let s(p) denote the smallest s ∈ N such that
p | 2s − 1. Note that s(p) is the multiplicative order of 2 in F

∗
p.

The next lemma is a well-known fact in modular representation theory. For
the basics in this theory (and only those are need in this article) the reader is
referred to chapter VII of [12].

Lemma 1. Let ν = p−1
s(p) , where p is an odd prime, and let G = 〈g〉. If g is of

order 2p then we have.

a) There are 1+ν irreducible KG-modules V0, V1, . . . , Vν , where V0 = K (the
trivial module) and dimVi = s(p) for i ∈ {1, . . . , ν}.

b) For i = 0, . . . , ν the projective indecomposable cover Wi of Vi, called a

PIM, is a nonsplit extension Wi =
Vi

Vi
of Vi by Vi. Furthermore,

KG = W0 ⊕W1 ⊕ . . .⊕Wν .
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In order to understand codes with automorphisms of order 2p we need the
following result which improves Proposition 3.1 of [13].

Proposition 1. Let G = 〈g〉 be a cyclic group of odd prime order p.

a) If s(p) is even, then all irreducible KG-modules are self-dual.

b) If s(p) is odd, then the trivial module is the only self-dual irreducible KG-
module.

Proof. a) Let s(p) = 2t and let E = F22t be the extension field of K = F2

of degree 2t. Furthermore, let W be an irreducible nontrivial KG-module. In
particular, W has dimension 2t. By Theorem 1.18 and Lemma 1.15 in Chap.
VII of [12], we have

W ⊗K E = ⊕α∈Gal(E/K)V
α (1)

where V is an irreducible KG-module and V α is the α-conjugate module of V .
Since p | (2t + 1)(2t − 1) we get p | 2t + 1. Clearly, Gal(E/K) consists of all
automorphisms of the form x 7→ xk where 0 ≤ k ≤ 2t− 1.

If V = 〈v〉 then vg = ǫv where ǫ is a nontrivial p-th root of unity in E. Since

p | 2t +1 we obtain ǫ2
t+1 = 1, hence ǫ2

t

= ǫ−1. Thus there is an α ∈ Gal(E/K)
such that

V ∗ ∼= V α

and equation (1) implies W ∼= W ∗.
b) Now let s(p) = t be odd. As above the irreducible module W is self-dual
if and only if V ∼= V α for some α ∈ Gal(F2t/K), or equivalently if and only

if ǫα = ǫ−1. Suppose that such an α exists. Then we may write ǫα = ǫ2
k

where 0 ≤ k ≤ t − 1. Hence ǫ2
k

= ǫ−1 for some 0 ≤ k ≤ t − 1 and therefore
2k ≡ −1 mod p. Now 22k ≡ 1 mod p forces t | 2k. Since t is odd we get
t | k ≤ t− 1, a contradiction.

Remark 1. According to Lemma 3.5 in [13] we have s(p) even if p ≡ ±3 mod 8
and s(p) odd if p ≡ −1 mod 8.

Remark 2. Since KG ∼= KG∗, Lemma 1 and Proposition 1 imply the following.

a) If s(p) is even, then

KG = W0 ⊕W1 ⊕ . . .⊕Wν

with Wi
∼= W ∗

i for all i ∈ {0, . . . , ν}.

b) If s(p) is odd, then ν is even (put ν = 2t) and

KG = W0 ⊕W1 ⊕ . . .⊕W2t

with W0
∼= W ∗

0 and Wi
∼= W ∗

2i for all i ∈ {1, . . . , t}.
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3 Automorphisms of order 2p in self-dual codes

Throughout this section let C be a self-dual code of length n. In particular
n is even. Suppose that g ∈ Aut(C) is of order 2p, where p is an odd prime.
Furthermore suppose that the involution h = gp acts fix point freely on the
n coordinates. Without loss of generality, we may assume that h = gp =
(1, 2)(3, 4) . . . (n− 1, n).

We consider the maps π = π2 : C(h) → K
n
2 , where

(c1, c1, c2, c2, . . . , cn
2
, cn

2
)

π
7→ (c1, c2, . . . , cn

2
),

and φ : C → K
n
2 , where

(c1, c2, . . . , cn−1, cn)
φ
7→ (c1 + c2, . . . , cn−1 + cn).

According to Theorem 1 of [3] we have

φ(C) ⊆ π(C(h)) = φ(C)⊥.

In particular,

φ(C) = π(C(h)) = φ(C)⊥ (i.e. π(C(h)) is self-dual)

if and only if

dim π(C(h)) = dim C(h) =
n

4
.

Theorem 1. The code C is a projective K〈g〉-module if and only if π(C(h)) is
a self-dual code.

Proof. First note that for an arbitrary finite group G a KG-module is projective
if and only if its restriction to a Sylow 2-subgroup is projective ([12], Chap. VII,
Theorem 7.14). Thus we have to consider the restriction C|〈h〉

, i.e., C with the
action of 〈h〉. As a K〈h〉-module we may write

C ∼= R⊕ . . .⊕R
︸ ︷︷ ︸

a times

⊕K ⊕ . . .⊕K
︸ ︷︷ ︸

n
2
−2a times

,

where R is the regular K〈h〉-module and K is the trivial one. If soc(C) denotes
the socle of C, i.e. the largest completely reducible K〈h〉-submodule of C, then

C(h) = soc(C) = K ⊕ . . .⊕K
︸ ︷︷ ︸

a times

⊕K ⊕ . . .⊕K
︸ ︷︷ ︸

n
2
−2a times

∼= K
n
2
−a.

Thus C is projective if and only if n
2 − 2a = 0, hence if and only if a = n

4 . This
happens if and only if dimC(h) = n

4 . This is equivalent to the fact that π(C(h))
is self-dual.
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Remark 3. If n ≡ 2 mod 4, then π(C(h)) ⊆ K
n
2 can not be self-dual, since n

2
is odd.

Remark 4. In G24 and XQR48 the subcodes fixed by fixed point free acting
involutions have self-dual projections. Thus we wonder if this holds true for all
extremal self-dual codes of length a multiple of 24.

Next we deduce some properties of C related to the action of the automor-
phism g of order 2p. This may help to decide whether π(C(h)) is self-dual or
not. For completeness we treat both cases n ≡ 2 mod 4 and n ≡ 0 mod 4.

Since h acts fixed point freely, g has x 2p-cycles and w 2-cycles, with

n = 2px+ 2w. (2)

Thus, as a K〈g〉-module, we have the decomposition

Kn = K〈g〉 ⊕ . . .⊕K〈g〉
︸ ︷︷ ︸

x times

⊕K〈h〉 ⊕ . . .⊕K〈h〉
︸ ︷︷ ︸

w times

.

Using Lemma 1 and V0
∼= K, we get

Kn =
V0

V0
⊕ . . .⊕

V0

V0
︸ ︷︷ ︸

x+w times

⊕ . . .⊕
Vν

Vν
⊕ . . .⊕

Vν

Vν
︸ ︷︷ ︸

x times

.

The action of 〈g〉 on Kn and the self-duality of C restrict the possibilities for C
as a subspace of Kn.

More precisely, we have

Proposition 2. As a K〈g〉-module the code C has the following structure.

C =
V0

V0
⊕ . . .⊕

V0

V0
︸ ︷︷ ︸

y0 times

⊕ V0 ⊕ . . .⊕ V0
︸ ︷︷ ︸

z0 times

⊕ . . .

. . .⊕
Vν

Vν
⊕ . . .⊕

Vν

Vν
︸ ︷︷ ︸

yν times

⊕ Vν ⊕ . . .⊕ Vν
︸ ︷︷ ︸

zν

,

where

1) 2y0 + z0 = x+ w,

2a) 2yi + zi = x for all i ∈ {1, . . . , ν}, if s(p) is even,

2b) zi = z2i and yi + y2i + zi = x for all i ∈ {1, . . . , t}, if s(p) is odd.
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Proof. Since C = C⊥ we see by a proof similar to that of Proposition 2.3 in [15]
that Kn/C ∼= C∗. The conditions on the multiplicities are an easy consequence
of this fact. Let us prove, for example, part 2b): if

C = . . .⊕
Vi

Vi
⊕ . . .⊕

Vi

Vi
︸ ︷︷ ︸

yi times

⊕ Vi ⊕ . . .⊕ Vi
︸ ︷︷ ︸

zi times

⊕ . . .

. . .⊕
V2i

V2i
⊕ . . .⊕

V2i

V2i
︸ ︷︷ ︸

y2i times

⊕ V2i ⊕ . . .⊕ V2i
︸ ︷︷ ︸

z2i

⊕ . . . ,

then

Kn/C = . . .⊕
Vi

Vi
⊕ . . .⊕

Vi

Vi
︸ ︷︷ ︸

x−zi−yi times

⊕ Vi ⊕ . . .⊕ Vi
︸ ︷︷ ︸

zi times

⊕ . . .

. . .⊕
V2i

V2i
⊕ . . .⊕

V2i

V2i
︸ ︷︷ ︸

x−z2i−y2i times

⊕ V2i ⊕ . . .⊕ V2i
︸ ︷︷ ︸

z2i

⊕ . . .

and since Vi
∼= V ∗

2i,

C∗ = . . .⊕
V2i

V2i
⊕ . . .⊕

V2i

V2i
︸ ︷︷ ︸

yi times

⊕ V2i ⊕ . . .⊕ V2i
︸ ︷︷ ︸

zi times

⊕ . . .

. . .⊕
Vi

Vi
⊕ . . .⊕

Vi

Vi
︸ ︷︷ ︸

y2i times

⊕ Vi ⊕ . . .⊕ Vi
︸ ︷︷ ︸

z2i

⊕ . . . .

Thus zi = z2i and x− zi − yi = y2i.

Proposition 2 implies that

φ(C)⊥ = π(C(h)) = π





ν⊕

i=0

Vi ⊕ . . .⊕ Vi
︸ ︷︷ ︸

yi+zi times



 . (3)

Since kerφ = C(h), we furthermore have

φ(C) ∼= C/ kerφ ∼=

ν⊕

i=0

Vi ⊕ . . .⊕ Vi
︸ ︷︷ ︸

yi times

,

which leads to

φ(C)⊥/φ(C) ∼=

ν⊕

i=0

Vi ⊕ . . .⊕ Vi
︸ ︷︷ ︸

zi times

.
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Taking dimensions we get

dimφ(C)⊥/φ(C) = z0 + s(p)

(
ν∑

i=1

zi

)

. (4)

Proposition 3. With the notations used in Proposition 2 we have

a) x ≡ w mod 2, if n ≡ 0 mod 4,

b) x 6≡ w mod 2, if n ≡ 2 mod 4.

Furthermore, if s(p) is even, then

x ≡ z1 ≡ . . . ≡ zν mod 2.

Proof. a) and b) follow immediately from (2). The last fact is a consequence of
2yi + zi = x, if s(p) is even, which is stated in Proposition 2.

Corollary 1.

a) φ(C)⊥/φ(C) is of even dimension, if n ≡ 0 mod 4,

b) φ(C)⊥/φ(C) is of odd dimension, if n ≡ 2 mod 4.

Proof. First note that s(p)
∑ν

i=1 zi ≡ 0 mod 2 whatever the parity of s(p) is. In
case s(p) odd this follows from zi = z2i for i ∈ {1, . . . , 2t = ν} (see Proposition
2). Furthermore, z0 ≡ x + w mod 2, hence z0 even, if 4 | n, and z0 odd, if
n ≡ 2 mod 4, according to Proposition 3. Thus (4) yields

dimφ(C)⊥/φ(C) ≡ z0 ≡ 0 mod 2, if n ≡ 0 mod 4

and
dimφ(C)⊥/φ(C) ≡ z0 ≡ 1 mod 2, if n ≡ 2 mod 4.

Corollary 2. Let n ≡ 0 mod 4 and let s(p) be even. If w is odd, then

dimC(h) = dimπ(C(h)) ≥
n

4
+

s(p)ν

2
=

n

4
+

p− 1

2
.

In particular, φ(C) < φ(C)⊥.

Proof. By Lemma 2, the condition 4 | n forces that w and x have the same
parity. Thus w odd implies that x is odd and by Proposition 2, we get zi ≥ 1
for i = 1, . . . ν. Therefore, according to (4),

dimC(h) = dimπ(C(h)) ≥
n

4
+

s(p)ν

2
=

n

4
+

p− 1

2
.
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Remark 5. We may ask whether the converse of Corollary 2 holds true; i.e.,
does φ(C) < φ(C)⊥ always implies that w is odd? This is not true. For instance,
there exist self-dual [36, 18, 8] codes and automorphisms of order 6 (note that
s2(3) is even) for which π(C(h)) is not self-dual, but w is even.

Corollary 3. Let n ≡ 0 mod 4 and let s(p) be even. If g has an odd number of
cycles of order 2, then C is not projective as a K〈g〉-module.

Proof. If the number of 2-cycles of g is odd, then w is odd. Thus, by Corollary
2 and Theorem 1, the assertion follows.

Let us introduce a notation about the structure of the automorphisms.

Definition 2. We say that an automorphism of prime order p of a code is of type
p-(α, β) if it has α p-cycles and β fixed points. Furthermore an automorphism
of order 2p is of type 2p-(α, β, γ; δ) if it has α 2-cycles, β p-cycles, γ 2p-cycles
and δ fixed points.

Since Aut(C) ≤ Sn, the largest possible prime which may occur as the order
of an automorphism of a self-dual code of length n is p = n−1. If n ≡ 0 mod 8,
then s(p) is odd. Obviously, in this case we can not have an automorphism of
order 2p.

Let C be an extremal self-dual code of length n ≥ 48. According to Theorem
7 in [4] an automorphism of type p-(α, β) with p > 5 satisfies α ≥ β. Hence the
second largest possible prime p satisfies n = 2p+ 2.

Corollary 4. Let C be a self-dual code of length n = 2p + 2, where p is an
odd prime, and minimum distance greater than 4. Suppose that involutions in
Aut(C) are fixed point free. If s(p) is even, then Aut(C) does not contain an
element of order 2p.
In case C is doubly even, the condition s(p) even may be replaced by condition
p 6≡ −1 mod 8.

Proof. Suppose that g is an automorphism of order 2p. Thus g has a cycle of
length 2p and one of length 2. As above let h = gp. By Corollary 2, we get

dim π(C(h)) ≥
n

4
+

p− 1

2
= p.

Since π(C(h)) ≤ K
n
2 = Kp+1, we see that π(C(h)) has minimum distance 1 or

2, a contradiction.
In case that C is doubly even we only have to show that p ≡ 1 mod 8 does not

occur (see Remark 1). If p ≡ 1 mod 8 then n = 2p+2 ≡ 4 mod 8, contradicting
the Theorem of Gleason (see [11], Theorem Corollary 9.2.2).

Corollary 5. Let C be an extremal self-dual code of length n = 24m. Let
g ∈ Aut(C) be an element of type 2p-(w, 0, x; 0). If s(p) is even and w is odd,
then p ≤ n

4 − 1.
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Proof. By Corollary 2, π(C(h)) has parameters [12m,≥ 6m + p−1
2 ,≥ 2m + 2].

According to the Griesmer bound (see [11], Theorem 2.7.4), we have

12m ≥

6m+ p−1

2
−1

∑

i=0

⌈
2m+ 2

2i

⌉

≥ (2m+ 2) + (m+ 1) + (6m+
p− 1

2
)− 2.

This implies p ≤ 6m− 1 = n
4 − 1.

Clearly, the estimation in Corollary 5 is very crude for m large. For instance,
if m = 5 the statement in Corollary 5 leads to p ≤ 29, but computing all terms
in the sum shows that even p ≤ 23.

4 Application to extremal self-dual codes of

length 120

From now on C is supposed to be a self-dual [120, 60, 24] code. The following
(see [7]) is the state of art about the automorphisms of C.

Automorphisms of odd prime order which may occur in Aut(C) are of type
29-(4, 4), 23-(5, 5), 19-(6, 6), 7-(17, 1), 5-(24, 0) or 3-(40, 0). Automorphisms of
order 2 can only be of type 2-(48, 24) or 2-(60, 0). Automorphisms of possible
composite odd order are of type 3·5-(0, 0, 8; 0), 3·19-(2, 0, 2; 0) or 5·23-(1, 0, 1; 0).

Thus we may ask about elements g ∈ Aut(C) of order 2p where p is an odd
prime. Note that the involution h = gp has no or exactly 24 fixed points, by [5].

Lemma 2. If the involution h has no fixed points, then g is of type

• 2 · 29-(2, 0, 2; 0),

• 2 · 19-(3, 0, 3; 0),

• 2 · 5-(0, 0, 12; 0),

• or 2 · 3-(0, 0, 20; 0).

If h has 24 fixed points then g is of type

• 2 · 23-(2, 1, 2; 1),

• or 2 · 3-(0, 8, 16; 0).

Note that Aut(C) does not contain elements of order 2 · 7.

Proof. The proof is straightforward by considering the cycle-structures using
[7].
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The above cycle structures show that only elements of order 2 ·19 satisfy the
hypothesis of Corollary 2. In this case s(19) is even and so we have

dimC(g19) ≥
120

4
+

19− 1

2
= 39.

Thus π2(C(g19)) is a [60,≥ 39,≥ 12] code. According to Grassl’s list [8] a
[60,≥ 39] code has minimum distance at most 10. Therefore we can state the
following.

Proposition 4. The automorphism group of an extremal self-dual [120, 60, 24]
code does not contain elements of order 38.

Next we consider automorphisms of order 58. By Lemma 2, we know that
g is of type 2 · 29-(2, 0, 2; 0). Therefore g2 is of type 29-(4, 4) and g29 is of type
2-(60, 2). Thus, without loss of generality, we may assume that

g2 = (1, . . . , 29)(30, . . . , 58)(59, . . . , 87)(88, . . . , 116)

and

g29 = (1, 30)(2, 31) . . . (59, 88)(60, 89) . . . (117, 118)(119, 120).

If π29 : C(g2) → F
8
2 is defined by

(v1, . . . , v120) 7→ (v1, v30, v59, v88, v117, v118, v119, v120)

then π29(C(g2)) is a self-dual [8, 4] code according to [10]. and clearly, the
minimum distance must be greater or equal to 4 since C is doubly-even. It is
well-known that, up to equivalence, the only code with such parameters is the
extended Hamming code Ĥ3.

According to Lemma 1 the structure of the ambient space K120, viewed as
a module for the group 〈g〉, is as follows:

K120 =
K K K K
K K K K

⊕
V V
V V

where dimV = 28. Since C(g2) has dimension 4, the code C(g) = (C(g2))(g29)
has dimension at least 2. By calculations we verify that

dim((π−1
29 (A))(g)) ≤ 2

for every A ∈ ĤS8

3 , which denotes the set of all self-dual [8, 4, 4] codes. Note

that there are only a few computations since |ĤS8

3 | = |S8|

|Aut(Ĥ3)|
= 30. Thus

dim C(g) = 2 and there are only two possible structures for C, namely

a) C =
K K
K K

⊕ V ⊕ V or

10



b) C =
K K
K K

⊕
V
V

.

Next we look at C(g29) which may be written as C(g29) = B⊗〈(1, 1)〉, where
B = π2(C(g29)) is a [60,≥ 30,≥ 12] code. In case a) we have dimB = 58, a
contradiction. Thus case b) occurs. According to Theorem 1, C is projective
and B is a self-dual [60, 30, 12] code. Furthermore B has an automorphism of
type 29-(2, 2).

Proposition 5. Every self-dual [60, 30, 12] code B with an automorphism of
type 29-(2, 2) is bordered double-circulant. There are (up to equivalence) three
such codes.

Proof. We can easily determine the submodule of B fixed by the given auto-
morphism and then do an exhaustive search with Magma on its complement in
K60 (following the methods described in [10] and considering the complement
as a vector space over F228). In fact, it turns out that B is equivalent to one of
the three bordered double-circulant singly-even codes of length 60 classified by
Harada, Gulliver and Kaneta in [9].

It is computationally easy to check that there are exactly 14 conjugacy classes
of elements of type 29-(2, 2) in Aut(B) for each of the three possiblities for B.

Using this we are able to do an exhaustive search for C along the methods
used in [2]. Without repeating all the details, we just recall the two main steps of
the search. First we determine a set, say L, such that there exists a t ∈ S120 and
L ∈ L such that (C(g2) + C(g29))t = L and gt = g. It turns out that |L| = 42.
In the second step we construct all possible codes C from the knowledge of its
socle as in section VI of [2]. By checking the minimum distance we see that in
all cases the codes are not extremal which proves the following.

Proposition 6. The automorphism group of an extremal self-dual [120, 60, 24]
code does not contain elements of order 58.

Acknowledgment. The first author likes to express his gratitude to his super-
visors F. Dalla Volta and M. Sala. Both authors are indepted to the Laboratorio
di Matematica Industriale e Crittografia at Milano and the Institut für Algebra
and Geometrie at Magdeburg for hospitality and excellent working conditions,
while this paper has mainly been written.

References

[1] E. F. Assmuss, H.F. Mattson, New 5-designs, J. Combin. Theory 6 (1969)
122–151.

[2] M. Borello, The automorphism group of a self-dual [72, 36, 16] binary code
does not contain elements of order 6, to appear IEEE Trans. Inform. The-
ory.

11



[3] S. Bouyuklieva, A method for constructing self-dual codes with an automor-
phism of order 2, IEEE Trans. Inform. Theory 46, No. 2 (2000), 496–504.

[4] S. Bouyuklieva, A. Malevich and W. Willems, Automorphisms of extremal
codes, IEEE Trans. Inform. Theory 56 (2010), 2091–2096.

[5] S. Bouyuklieva, On the automorphisms of order 2 with fixed points for the
extremal self-dual codes of length 24m, Des. Codes Cryptogr. 25 (2002)
5–13.

[6] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The
user language, J. Symbol. Comput. 24 (1997) 235–265.

[7] J. de la Cruz, Über die Automorphismengruppe extremaler Codes der Län-
gen 96 und 120, PhD thesis, Otto-von-Guericke University Magdeburg.

[8] M. Grassl, Bounds on the minimum distance of linear codes and quantum
codes, online available at www.codetables.de , accessed on 2012-09-15

[9] M. Harada, T.A. Gulliver and H. Kaneta, Classification of extremal double-
circulant self-dual codes of length up to 62, Discrete Mathematics 188
(1998), 127–136.

[10] W.C. Huffman, Automorphisms of codes with application to extremal doubly
even codes of length 48, IEEE Trans. Inform. Theory 28 (1982), 511–521.

[11] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cam-
bridge University Press, 2003.

[12] B. Huppert and N. Blackburn, Finite Groups II, Springer 1982.

[13] C. Martínez-Pérez and W. Willems, Self-dual codes and modules of finite
groups in characteristic two, IEEE Trans. Inform. Theory 50 (2004), 67–78.

[14] E.M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory
44 (1998), 134–139.

[15] W. Willems, A note on self-dual group codes, IEEE Trans. Inform. Theory
48 (2002), 3107–3109.

12


