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Abstract. Let p, q be different primes and suppose that the principal p- and the prin-

cipal q-block of a finite group have only one irreducible complex character in common,

namely the trivial one. We conjecture that this condition implies the existence of a nilpo-

tent Hall {p, q}-subgroup and prove that a minimal counter-example must be an almost

simple group where pq divides the order of its simple nonabelian normal subgroup. As

an immediate consequence we obtain that the conjecture holds true for p-solvable or

q-solvable groups. Furthermore, we prove the conjecture in case 2 ∈ {p, q} using the

classification theorem of finite simple groups. Finally, we consider the situation that the

intersection of an arbitrary p-block with an arbitrary q-block contains only one irreducible

character.

1. Introduction

For a finite group G and a p-block B(G)p of G we denote by Irr(G) resp. Irr(B(G)p) the

set of irreducible complex characters of G, resp. the set of those which belong to B(G)p,

where p is a prime. Furthermore, we use the notation 1G for the trivial character of G and

B0(G)p for the principal p-block of G. Throughout the paper let q be a prime different

from the prime p. Inspired by Brauer’s problem [8], many papers in the literature deal

with relations between p- and q-blocks of G and properties of the group structure. In this

sense the following two theorems have been proved in ([6], Theorem 4.1 and Proposition

4.2).

Theorem 1.1. (Bessenrodt-Zhang) We have Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G} for all

primes p 6= q dividing |G| if and only if G is nilpotent.

What they really proved is the following from which Theorem 1.1 directly follows.

Theorem 1.2. (Bessenrodt-Zhang) Let p be a fixed prime dividing |G|. Then we have

Irr(B0(G)p)∩ Irr(B0(G)q) = {1G} for all primes q 6= p if and only if G = P ×Op′(G) where

P is a Sylow p-subgroup of G.
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We conjecture here a more general fact which obviously implies Theorem 1.1, namely

Conjecture 1.3. If Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G} for a pair of primes p, q, then G

has a nilpotent Hall {p, q}-subgroup.

Note that the converse of Conjecture 1.3 is false. We may take for G a dihedral group

of order |G| = 2pq where 2, p, q are pairwise different primes. The cyclic subgroup of order

pq is a Hall {p, q}-subgroup. Furthermore, the linear nontrivial character of G belongs to

the principal p- and q-block.

In case G is a simple group Conjecture 1.3 has an affirmative answer, by ([10], The-

orem 1.2). The only examples satisfying the assumption of Conjecture 1.3 are J1 for

{p, q} = {3, 5} and J4 for {p, q} = {5, 7}. Both groups have a nilpotent Hall {p, q}-
subgroup.

We would like to mention here that in [27] and [4] the existence of nilpotent Hall sub-

groups is described by pure group theoretical properties. In addition, recently, a conjectural

characterization of the property in terms of character degrees and principal blocks is put

forward by G. Malle and G. Navarro [25].

In this note we reduce Conjecture 1.3 to almost simple groups and prove it in special

cases.

Theorem 1.4. If G is a minimal counter-example to Conjecture 1.3 w.r.t. the order,

then S ≤ G ≤ Aut(S) where S is a nonabelian simple group with pq | |S|. Moreover,

G = SCG(P ) = SCG(Q) where P is a Sylow p-subgroup and Q is a Sylow q-subgroup of S.

As a consequence Conjecture 1.3 obviously holds true for p- or q-solvable groups as well.

Using extensively the character theory of groups of Lie type we can answer Conjecture 1.3

if one of the primes is even.

Theorem 1.5. Conjecture 1.3 holds true if 2 ∈ {p, q}.

However, the proof of Theorem 1.5 requires the following stronger version of Theorem

1.4. The added improvement relies on the classification of finite simple groups which is not

needed for Theorem 1.4.

Theorem 1.6. If G is a minimal counter-example to Conjecture 1.3 w.r.t. the order, then

S < G ≤ Aut(S) where S is a simple nonabelian group with pq | |S| and gcd(|G/S|, pq) = 1.

Moreover, G = SOp′(CG(P )) = SOq′(CG(Q)) where P is a Sylow p-subgroup and Q is a

Sylow q-subgroup of S.

Instead of considering the intersection of principal blocks we may look at groups with

the following property:

|Irr(B(G)p) ∩ Irr(B(G)q)| = 1

where B(G)p and B(G)q are arbitrary blocks for the prime p, resp. q. If this condition

holds, then one is tempted to ask whether a fixed defect group of B(G)p must centralize
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a suitable defect group of B(G)q. Unfortunately, this is not always the case as the next

example shows.

Example 1.7. Let G = Co1 be the first Conway simple group. Then G has a 2-block

B(G)2 with defect group 〈2a, 4e〉 in the notation of the ATLAS [12]. There is also a 13-

block B(G)13 of defect 1 which intersects B(G)2 only in one irreducible character. However,

a defect group of B(G)2 never commutes with a defect group of B(G)13 since G has no

element of order 4 ∗ 13.

Theorem 1.8. Let B(G)p and B(G)q be blocks of maximal defect and suppose that the

Sylow p- and Sylow q-subgroups of G are cyclic. If |Irr(B(G)p) ∩ Irr(B(G)q)| = 1, then G

has a nilpotent Hall {p, q}-subgroup.

Note that Theorem 1.8 answers Conjecture 1.3 in case that the Sylow p- and Sylow q-

subgroups of G are cyclic. We may ask here the question whether Theorem 1.8 holds true

if we drop the assumption that the blocks are of maximal defect. This means, does a defect

group of B(G)p centralizes a suitable defect group of B(G)q if |Irr(B(G)p)∩Irr(B(G)q)| = 1

for blocks B(G)p and B(G)q?

Finally we prove this for a special case in the last section .

Theorem 1.9. Let B(G)p and B(G)q be blocks of the symmetric group Sn. If |Irr(B(G)p)∩
Irr(B(G)q)| = 1, then a defect group of B(G)p centralizes a suitable defect group of B(G)q.

2. Reduction to almost simple groups

In this section we reduce Conjecture 1.3 to almost simple groups. If f0,p(G) =
∑

g∈G fgg

denotes the block idempotent of the principal p-block B0(G)p over a splitting field of

characteristic p for a finite group G, then Of0,p(G) is defined as the subgroup of G generated

by

supp(f0,p(G)) = {g | fg 6= 0}.
As usual, the notations E(G), F (G) and F ∗(G) denote the layer, the Fitting subgroup

and the generalized Fitting subgroup of G, respectively, see [19, 20].

Lemma 2.1. ([32], Lemma 1.3) Let N be a normal subgroup of a finite group G. Suppose

that CG(P ) ≤ N for a Sylow p-subgroup P of N . Then f0,p(N) = f0,p(G).

Lemma 2.2. Let N be a normal subgroup of a finite group G. Then the following state-

ments are equivalent:

(1) f0,p(N) = f0,p(G).

(2) Of0,p(G) ⊆ N , i.e., f0,p(G) is supported on elements of N .

(3) The principal p-block of G is the unique p-block of G covering the principal p-block

of N .

(4) The irreducible characters of G/N all lie in the principal p-block of G.
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Proof. The equivalence of (1), (2), and (3) is immediate from the theory of covering blocks

and the equivalence of (3) and (4) is a consequence of block domination by ([28], Ch. V,

Lemmas 5.6 and 8.6). �

Lemma 2.3. Let p and q be primes, and let G be a finite group. Suppose that pq divides

|G|, and Irr(B0(G))p ∩ Irr(B0(G))q = {1G}. Then for any normal subgroup N of G such

that f0,p(N) = f0,p(G), the following statements hold:

(1) q does not divide |G/N |.
(2) Irr(B0(N))p ∩ Irr(B0(N))q = {1N}.

Proof. (1) Let Ḡ = G/N . By Lemma 2.2 (1) and (4), we have Irr(Ḡ) ⊆ Irr(B0(G)p).

Obviously, Irr(B0(Ḡ)q) ⊆ Irr(B0(G)q). Thus, by assumption

Irr(Ḡ) ∩ Irr(B0(Ḡ)q) = {1G}.
This implies that Ḡ is a q′-group.

(2) By (1), we know that q | |N |. We may assume p | |N |, since otherwise the conclusion

trivially holds. Now the assertion of (2) follows by Lemma 2.2 (1) and (3) and ([10], Lemma

2.6) applied with the role of p by q. �

Lemma 2.4. Suppose that G is a minimal counter-example to Conjecture 1.3. Suppose

that N is a proper normal subgroup of G and let P be a Sylow p-subgroup of N and Q a

Sylow q-subgroup of N . Then f0,p(G) 6= f0,p(N) and G = NCG(P ) = NCG(Q).

Proof. Suppose that f0,p(G) = f0,p(N) for some proper normal subgroup N of G. Without

loss of generality, we may we assume that N is a maximal normal subgroup of G. By

Lemma 2.3 (1), N contains a Sylow q-subgroup of G and by Lemma 2.3 (2) and the

minimality of G as a counterexample, there exists a Sylow q-subgroup Q of N (hence of

G) such that CN (Q) contains a Sylow p-subgroup of N .

If f0,q(G) = f0,q(N), then by Lemma 2.3 (2), applied with the roles of p and q reversed, N

also contains every Sylow p-subgroup of G. We obtain a contradiction. So we may assume

that f0,q(G) 6= f0,q(N). Note that G = NNG(Q) by the Frattini argument. Furthermore

NCG(Q) is a normal subgroup ofG. If CG(Q) ⊆ N then sinceQ is a Sylow q-subgroup ofN ,

it follows by Lemma 2.1 that f0,q(G) = f0,q(N), a contradiction. Therefore, CG(Q) 6⊆ N ,

and so by the maximality of N , we have G = NCG(Q). In particular, |G|p|CN (Q)|p =

|N |p|CG(Q)|p. Now the previous paragraph shows that |CG(Q)|p = |G|p, and again we

obtain a contradiction. This proves the first assertion.

For the second assertion, let P0 be a Sylow p-subgroup of H := NCG(P ) containing

P . Then CG(P0) ≤ CG(P ) ≤ H and by the Frattini argument H is normal in G. So, by

Lemma 2.1, f0,p(G) = f0,p(H). Hence by the previous assertion H = G. �

Proof of Theorem 1.4

Let G be a minimal counter-example with respect to |G|. Thus pq | |G|.
(1) G has a unique minimal normal subgroup N .
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Proof. Suppose that G has two minimal normal subgroups M and N . If p | |G/N | but

q - |G/N |, then any Sylow p-subgroup of G/N is a nilpotent Hall {p, q}-subgroup of

G/N , while if pq | |G/N | then G/N has a nilpotent Hall {p, q}-subgroup by the fact

that Irr(B0(G/N)p) ∩ Irr(B0(G/N)q) = {1G/N} and the minimality of G. Hence Ĝ :=

G/N ×G/M has a nilpotent Hall {p, q}-subgroup in any case. By a theorem of Wielandt

[31], all of the Hall {p, q}-subgroups of Ĝ are conjugate and each {p, q}-subgroup of Ĝ is

contained in some Hall {p, q}-subgroup of Ĝ. Since G can be viewed as a subgroup of Ĝ,

it follows that G also has a nilpotent Hall {p, q}-subgroup, a contradiction. �

(2) F (G) = 1.

Proof. Suppose U := Op(G) 6= 1. By Lemma 2.4 applied with N = U , G = UCG(U),

whence CG(U) contains a Sylow q-subgroup of G. By the minimality of G as a counterex-

ample G/U has a nilpotent Hall {p, q}-subgroup. So there exists a Sylow p-subgroup P of

G and a Sylow q-subgroup Q of G such that Q centralizes P/U and U . According to ([3],

Lemma A.2), Q centralizes P . This means that G has a nilpotent Hall {p, q}-subgroup, a

contradiction. Similarly, Oq(G) = 1. So |F (G)| is relatively prime to pq. Consequently, if

F (G) 6= 1, then G/F (G) and hence G has a nilpotent Hall {p, q}-subgroup, a contradic-

tion. �

(3) E(G) is simple.

Proof. By Steps (1) and (2), E(G) =: N = S1 × · · · × St is a minimal normal subgroup of

G, where Si ∼= S is non-abelian simple. Suppose that t 6= 1. In particular, N 6= G. By

the minimality of G as a counterexample, either p divides |N | or q divides |N |. Without

loss of generality we may assume p | |N |. Let Pi be a Sylow p-subgroup of Si and let

P = P1 × · · · × Pt. By Lemma 2.4, G = NCG(P ). So for any g ∈ G, P g1 ≤ S1 ∩ S
g
1 and Sg1

is a normal subgroup of N . Hence S1 ∩ Sg1 is a non-trivial normal subgroup of S1, hence

S1 ∩ Sg1 = S1. Consequently, S1 is normal in G, contradicting the minimality of N . It

follows that N is non-abelian simple. �

(4) S ≤ G ≤ Aut(S) and pq | |S|. Moreover, G = SCG(P ) = SCG(Q) where P is a

Sylow p-subgroup and Q is a Sylow q-subgroup of S.

Proof. By Steps (2) and (3), F ∗(G) = S is non-abelian simple, whence S ≤ G ≤ Aut(S).

If G 6= S, then by Lemma 2.4, G = SCG(P ) = SCG(Q) where P is a Sylow p-subgroup

and Q is a Sylow q-subgroup of S. Suppose that without loss of generality p | |S|. If

q - |S| then CG(P ) contains a Sylow q-subgroup Q of G. By the minimality of G, G/S ∼=
PCG(P )/PCS(P ) has a nilpotent Hall {p, q}-subgroup. Write P1 for a Sylow p-subgroup

of PCG(P ) (and hence of G) such that Q centralizes P1/P . Then Q centralizes P1 by

([3], Lemma A.2), namely G has a nilpotent Hall {p, q}-subgroup, a contradiction. This

completes the proof. �

�
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3. Reduction to almost simple groups with generalized p′-core

In order to prove Theorem 1.6, we need the following definition which is due to Bender

in [5].

Definition 3.1.

a) A finite group G is called a p∗-group if the following two conditions hold.

(i) Op(G) = G, i.e., G does not have a nontrivial p-factor group.

(ii) Whenever N EG and P ∈ Sylp(N), then G = NCG(P ).

b) Op∗(G) = 〈N | N EG,N is a p∗-group〉 is called the generalized p′-core of G.

As usual we define Op∗,p(G) by

Op∗,p(G)/Op∗(G) = Op(G/Op∗(G)).

Theorem 3.2. ([20], Chap. X, Section 14) The following holds true.

a) Op∗(G) is the largest normal p∗-subgroup of G.

b) If P ∈ Sylp(Op∗,p(G)), then CG(P ) ≤ Op∗,p(G).

c) G is p-constrained if and only if Op∗(G) = Op′(G).

It is well known that Of0,p(G) = Op′(G) if G is p-constrained ([20], Chap. VII, Theorem

13.6). In general, we have

Theorem 3.3. ([33], Theorem 2.1 and 2.6)

Of0,p(G) ≤ Op∗(G)

with equality if p 6= 2.

Lemma 3.4. Suppose that pq | |G|. If Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G}, then

(1) q - |G/Op∗(G)| and p - |G/Oq∗(G)|.
(2) Irr(B0(N)p) ∩ Irr(B0(N)q) = {1N} for any N EG containing Op∗(G).

Proof. By Theorem 3.3, f0,p(G) is supported on elements of Op∗(G) and f0,q(G) is sup-

ported on elements of Oq∗(G). Thus the assertions of part (1) and (2) follow from Lemma

2.2 (1) and (2) and Lemma 2.3. �

Corollary 3.5. Suppose that pq | |G|.
If Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G}, then G = Op∗(G) Oq∗(G).

Proof. Let Ḡ = G/Op∗(G). By Theorem 3.3, f0,p(G) is supported on elements of Op∗(G).

So, by Lemma 2.2 (2) and (4), we have Irr(Ḡ) ⊆ Irr(B0(G)p). It follows that

Irr(G/(Op∗(G) Oq∗(G))) ⊆ Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G}.
Thus G = Op∗(G) Oq∗(G). �

Lemma 3.6. Let M E G with |G/M | = p and suppose that G satisfies the assumption

of Conjecture 1.3. If M has a nilpotent Hall {p, q}-subgroup, then G has a nilpotent Hall

{p, q}-subgroup.
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Proof. Let P0×Q be a nilpotent Hall {p, q}-subgroup of M where Q ∈ Sylq(G). If CG(Q) ≤
M , then by Lemmas 2.1 and 2.2, the principal q-block B0(G)q of G is the unique q-block

of G covering B0(M)q. In particular, Irr(G/M) ⊆ Irr(B0(G)q). Furthermore we have

Irr(G/M) ⊆ Irr(B0(G)p), by ([28], Chap. V, Corollary 5.6). It follows that

{1G} 6= Irr(G/M) ⊆ Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G},
a contradiction. Hence CG(Q) �M , and so |CG(Q) : CM (Q)| = p. Since P0 ≤ CM (Q), we

conclude that CG(Q) contains a Sylow p-subgroup of G and we are done. �

Proof of Theorem 1.6

Let G be a minimal counter-example with respect to |G|. By Theorem 1.4, G is almost

simple, and if we write S for the socle of G then pq | |S| and S ⊆ Op∗,p(G) ∩ Oq∗,q(G).

By Schreier’s conjecture, which has an affirmative answer due to the classification of finite

simple groups, we know that G/S is solvable.

(1) G = Op∗,p(G) = Oq∗,q(G).

Proof. Suppose that Op∗,p(G) < G. Write Kp = Op∗,p(G) and let M be a maximal

normal subgroup of G containing Kp. According to Lemma 3.4 (2) we have Irr(B0(M)p)∩
Irr(B0(M)q) = {1}. Hence M has a nilpotent Hall {p, q}-subgroup, say P0 × Q, where

P0 ∈ Sylp(M) and Q ∈ Sylq(M). By Lemma 3.4 (1), Q is a Sylow q-subgroup of G. If

p - |G/M | then P0 is also a Sylow p-subgroup of G, a contradiction. If |G/M | = p, then

by Lemma 3.6, G has a nilpotent Hall {p, q}-subgroup, a contradiction. Thus we have

Op′(G/Kp) = G/Kp and Op(G/Kp) = G/Kp, which is impossible since G/S is solvable.

Thus G = Op∗,p(G), and by symmetry G = Oq∗,q(G) �

(2) G = Op∗(G) = Oq∗(G).

Proof. By Step (1) we may choose S ≤MEG with Op∗(G) ≤M and |G/M | = p. According

to Lemma 3.4 (2) we have Irr(B0(M)p) ∩ Irr(B0(M)q) = {1} and so M has a nilpotent

Hall {p, q}-subgroup. Now Lemma 3.6 implies the existence of a Hall {p, q}-subgroup of

G, a contradiction. �

(3) G = SOp′(CG(P )) = SOq′(CG(Q)) where P ∈ Sylp(G) and Q ∈ Sylq(G).

Proof. According to ([20], Chap. X, Theorem 14.17) we have

G = Oq∗(G) = Oq′,E(G) Oq∗(CG(Q)) = OE(G) Oq∗(CG(Q))

where Q ∈ Sylq(Oq′,E,q(G)) and Oq′,E and Oq′,E,q are as in ([20], Chap. X, Definition

14.17). Since OE(G) = S we see that

G = Oq∗(G) = SOq∗(CG(Q)).

Applying ([20], Chap. X, Theorem 14.18) and the first sentence of the following Remarks

14.19 we obtain

G = Oq∗(G) = SOq′(CG(Q))
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where Q ∈ Sylq(S). Applying the same arguments for p instead of q leads to

G = Op∗(G) = SOp′(CG(P ))

where P ∈ Sylp(S).

Finally, the assertion S < G follows by ([10], Theorem 1.2). �

4. Almost simple groups

In this section we prove Theorem 1.5, starting with the following observation.

Lemma 4.1. Let p be a prime, and let N be a normal subgroup of a finite group G such

that |G/N | = r is a prime and G = NCG(P ), where P ∈ Sylp(G). Suppose that p 6= r 6= 2

and there exists an r-rational G-invariant character χ ∈ Irr(B0(N)p). Then the following

holds true.

a) χ has a unique r-rational extension χ̂ ∈ Irr(G).

b) χ̂ ∈ Irr(B0(G)p) and Q(χ̂) = Q(χ).

Proof. a) This is ([21], Theorem 6.30).

b) By a) we write χ̂ for the unique r-rational extension of χ to G, and so

χG =
∑

ξ∈Irr(G/N)

χ̂ξ.

Clearly one of the extensions χ̂ξ must be in the principal p-block. Suppose that that

character is not the r-rational one which we denoted by χ̂. Note that all characters in

{χ̂ξ | 1 6= ξ ∈ Irr(G/N)} are algebraically conjugate by elements in Gal(Q|G| : Q|G|r′ ).
Thus, by Brauer ([7], Lemma 2), χ̂ξ ∈ Irr(B0(G)p) for all 1 6= ξ ∈ Irr(G/N). Since r ≥ 3,

this contradicts a result of Alperin ([2], Lemma 1). Hence χ̂ ∈ Irr(B0(G)p). Note that

Gal(Q|G| : Q(χ)) stabilizes χ̂, again by ([2], Lemma 1). This implies Q(χ̂) = Q(χ). �

Remark 4.2. Lemma 4.1 fails if r = 2. In this case a rational irreducible character in the

principal block of N has two extensions which could both be rational and therefore not

distinguishable. But only one of them lies in the principal block.

Proposition 4.3. Let H be a finite simple group of Lie type over Fq (here q is a power of

a prime) and let p1 6= p2 be primes with pi - q. Then Irr(B0(H)p1)∩ Irr(B0(H)p2) contains

a nontrivial rational unipotent character χ.

Proof. By ([23], Lemma 3.6), we know that Irr(B0(H)p1)∩Irr(B0(H)p2) contains nontrivial

unipotent characters. There remains to prove that at least one such character is rational.

If H is of type

A,B,C,D, 2A, 2D,

then all unipotent characters are rational, by ([24], Theorem 0.2 and Remark 1.13).

If H is of type

G2, F4,
2B2,

2G2,
2F4,

3D4,

then we may take the Steinberg character for χ, by ([18], Theorem). Note that the Steinberg

character is always rational ([11], Proposition 6.4.4) and unipotent ([11], Corollary 7.6.6).
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Thus we are left with groups of type

E6,
2E6, E7, E8.

We deal explicitly with the case H = E6(q) in Lemma 4.4 and collect the analogous

facts for the other groups in tables so that the reader can carry out the relevant Chevie

[16] computations. �

Lemma 4.4. Let E be the finite simple group of type E6 over Fq and let p1 6= p2 be primes

with pi - q. Then Irr(B0(E)p1) ∩ Irr(B0(E)p2) contains a nontrivial rational unipotent

character χ.

Proof. Let E be a simple, simply connected algebraic group of type E6 and F a Frobe-

nius endomorphism of E such that E = EF /Z(EF ). Notice that unipotent characters

of EF have Z(EF ) in its kernel, hence are characters of E. Thus we may assume that

E = EF = E6(q).

a) First note that all 25 unipotent characters of E which lie in the principal series (see [11],

page 480) are rational.

This is an immediate consequence of ([15], Proposition 5.6) since all principal series char-

acters are rational.

b) We finish the proof of the lemma by showing that a unipotent character belonging to

the principal series lies in Irr(B0(E)p1) ∩ Irr(B0(E)p2).

Note that

|E6(q)| = q36Φ1(q)
6Φ2(q)

4Φ3(q)
3Φ4(q)

2Φ5(q)Φ6(q)
2Φ8(q)Φ9(q)Φ12(q)

where Φn(x) denotes the n-th cyclotomic polynomial in Z[x]. Thus we may write

|E6(q)| = q36
∏
i∈I

Φ
a(i)
i

with I = {1, 2, 3, 4, 5, 6, 8, 9, 12}. Let

ei = multiplicative order of q modulo

{
pi if pi 6= 2

4 if pi = 2.

Clearly, e1, e2 ∈ I. For i = 1, 2 let Si be a Sylow ei-torus of E and let Li = CE(Si). Then

(Li, 1LF
i

) is a unipotent ei-cuspidal pair and by [13] all irreducible constituents of RE
Li

(1LF
i

)

lie in a fixed pi-block which must be the principal pi-block since the trivial character is

a constituent of RE
Li

(1LF
i

). With the help of Chevie [16] we see that we may take the

Steinberg character for χ if e1 6= 5 6= e2. Thus, w.l.o.g. we may suppose that e1 = 5.

Now we use Chevie [16] again to compute explicitely the irreducible components of

RE
Li

(1LF
i

). It turns out that for e2 = 8 the unipotent character φ81,10 lies in RE
Li

(1LF
i

) for

i = 1, 2, and φ64,13 in case e2 = 9. In all other cases the unipotent character φ6,25 does

the job. Note that all these characters belong to the principal series, also the Steinberg

character (see [11], Section 13.9). Thus the proof of the lemma is complete. �
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In Tables 1,2,3 we deal with the remaining groups E7(q), E8(q) and 2E6(q). For partic-

ular values e1, e2 we determine a unipotent character. If the pair e1, e2 is not in the list the

Steinberg character may be chosen. Characters of the form φa,b are in the principal series,

hence rational by Geck’s result ([15], Proposition 5.6). In table 3 the chararacter 2A5, ε

arises from a cuspidal unipotent character of the Levi subgroup 2A5(q) which is rational by

Lusztig’s result ([24], Remark 1.13). Thus 2A5, ε is rational, again by Geck’s result ([15],

Proposition 5.6). In Table 1 and Table 2 there are characters of the form D4, a for several

a. These characters arise from a cuspidal unipotent character of the Levi subgroup D4(q)

which are rational, again by Lusztig’s result ([24], Theorem 0.2). The rationality of D4, a

follows by applying Geck’s result again.

Proof of Theorem 1.5. Without loss of generality, we may assume that q = 2 and p is

an odd prime. Let G be a minimal counter-example to Conjecture 1.3. By Theorem 1.6,

we have S < G = SOp′(CG(P )) = SO2′(CG(Q)) for P a Sylow p-subgroup and Q a Sylow

2-subgroup of S. Thus, by ([23], Lemma 2.2), S must be a simple group of Lie type in odd

characteristic. Furthermore, if p is the defining characteristic of S, then by ([6], Lemma

2.2) CG(P ) is a p-group, and so G = S, a contradiction. Hence neither p nor 2 can be the

defining characteristic of S.

Let S = N0 E N1 E · · · E Ns = G where |Ni/Ni−1| is an odd prime different from p.

By Proposition 4.3, we see that Irr(B0(S)p) ∩ Irr(B0(S)2) contains a nontrivial rational

unipotent character χ0. Furthermore note that by Dedekind’s identity we have Ni =

Ni−1CNi(P ) = Ni−1CNi(Q). Now Alperin’s result ([2], Lemma 1) says that the restriction

map

Irr(B0(G)p) 3 χ̂ −→ χ̂|S = χ ∈ Irr(B0(S)p)

is a bijection. By symmetry the same also holds true for the prime 2. This implies that the

character χ0 extends to G and so to N1. Therefore, by Lemma 4.1, the unique |N1/N0|-
rational extension ξ of χ0 to N1, which is indeed rational since Q(ξ) = Q(χ0), is contained

in Irr(B0(N1)p) ∩ Irr(B0(N1)2). In particular, the extension ξ is N2-invariant.

Repeating this step via the chain S = N0 E N1 E · · · E Ns = G we finally obtain

|Irr(B0(G)p) ∩ Irr(B0(G)2)| ≥ 2, a contradiction. This completes the proof. �

5. Cyclic Sylow subgroups

Using completely different methods than above we prove Theorem 1.8. Based on Osima’s

character relation for blocks Feit has shown the following ([14], Chap. IV, Lemma 6.4).

Lemma 5.1. Let B(G)p and B(G)q be any blocks for primes p 6= q. If x ∈ G is a p-element

and y ∈ G is a q-element such that no conjugate of x commutes with any conjugate of y,

then ∑
χ∈Irr(B(G)p)∩Irr(B(G)q)

χ(x)χ(y) = 0.
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Table 1. E7(q), I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18}

e1 e2 rational unipotent character

4 1,2,3,4,6,12 φ210,6
5 φ336,11
7 φ405,8
8 φ105,6
9 φ56,3
10 D4, σ2
14 φ189,10
18 D4, 1

5 1,2,3,5,6,18 φ21,33
7 φ216,16

8,10 φ189,22
12 φ336,1
9 φ56,30
14 φ189,17

8 1,2,3,6,8,12 φ21,36
7 φ216,9
9 φ280,17
10 φ189,22
14 D4, rε1
18 D4, rε

10 1,2,3,6,9,10 φ35,31
7 φ405,15
12 D4, σ2
14 D4, rε2
18 D4, ε

12 1,2,3,6,12 φ21,36
7 φ120,25
9 φ56,3
14 D4, ε2
18 D4, 1

Now suppose that the defect group of B(G)p is cyclic, hence generated by some x ∈ G. If

χ ∈ Irr(B(G)p), then it may happen that χ(x) = 0, and the above Lemma tells us nothing.

However, by an argument we learned from Gabriel Navarro, we get the following.

Lemma 5.2. Let χ ∈ Irr(G) with p - χ(1). If g ∈ G is a p-element, then χ(g) 6= 0.

Proof. Let pn be the order of g. Note that g is a zero of the polynomial xp
n − 1 which

has only simple roots. Thus a suitable matrix of g with respect to χ is a diagonal matrix

where the elements in the diagonal are pn-th roots of unity. Let M be a maximal ideal of
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Table 2. E8(q), I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30}

e1 e2 rational unipotent character

7 1,2,3,5,6,7,10,14,15,30 φ8,91
4,12 φ400,7
8,24 φ160,55

9 φ3200,22
18 φ2400,23
20 φ1296,33

9 1,2,3,5,6,9,10,30 φ28,68
4,12,15,20 φ112,63

8,24 φ160,7
14 φ5600,21
18 φ1008,9

14 1,2,3,5,6,10,14,15,30 φ8,91
4,8 φ6075,14
12 φ210,52
18 D4, φ

′
8,9

24 D4, φ
′′
2,16

18 1,2,3,5,6,10,15,18 φ84,64
4,12 φ210,4
8,24 D4, φ

′
2,4

20,30 D4, φ1,24

Table 3. 2E6(q
2), I = {1, 2, 3, 4, 6, 10, 12, 18}

e1 e2 rational unipotent character

10 1,2,3,4,6,10,12 φ′′2,16
18 2A5, ε

the ring R of algebraic integers containing pR. Clearly, if we reduce a pn-th root of unity

mod M we get 1. This shows that

χ(g) ≡ χ(1) mod M.

Since p - χ(1) we finally obtain χ(g) 6= 0. �

Proof of Theorem 1.8. Let B(G)p and B(G)q be blocks of maximal defect. Let P = 〈x〉
be a Sylow p-subgroup of G and let Q = 〈y〉 be a Sylow q-subgroup of G. Suppose that

χ ∈ Irr(B(G)p)∩ Irr(B(G)q). Since all irreducible characters in a block with a cyclic defect

group are of height 0, we get p - χ(1) and q - χ(1). Thus, by Lemma 5.2, we see that

χ(x)χ(y) 6= 0. If [xg, yh] 6= 1 for all g, h ∈ G, then we may apply Lemma 5.1 and see
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that |Irr(B(G)p) ∩ Irr(B(G)q)| ≥ 2, a contradiction. Thus there exists h ∈ G such that

[x, yh] = 1, which proves the theorem. �

6. Symmetric groups

In this section we prove Theorem 1.9. For convenience, we start by recalling some facts

about partitions from [29]. Let t, n be positive integers and let λ, µ be partitions of n. A

t-core partition of n is a partition of n all of whose hook numbers are not divisible by t,

and the t-core λ(t) of λ is the t-core partition obtained by recursively removing all t-hooks

starting from λ.

A partition sequence is a bi-infinite sequence of zeroes and ones, such that if we consider

the sequence going from the left to the right we have:

(i) All entries to the left of a certain point are zeroes.

(ii) All entries to the right of a certain point are ones.

For example,

. . . 0 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 . . .

is a partition sequence, where the dots on the left and the right represent infinite sequences

of zeroes and ones, respectively. By [29, Lemma 2.1], any partition can be uniquely deter-

mined by a partition sequence.

Next, we recall some basic facts about partition sequences, which can be found in [1,

Section 3] and [30, Exercise 7.59]. Visually, the partition sequence of a partition λ can be

obtained as follows: For the edges in the boundary of the Young diagram of λ, starting at

the bottom and ending to the right, we label the vertical (resp. horizontal) edges with 0

(resp. 1) (see Figure 1). In this way, we get a 01-sequence Λλ. Adding an infinite sequence

of zeroes to the left of Λλ and an infinite sequence of ones to the right of Λλ, we obtain a

partition sequence, which is indeed the one associated with the partition λ in [29, Lemma

2.1].

Figure 1. The partition sequence of a partition λ = (6, 3, 3, 1)
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Given a partition λ and its 01-sequence Λλ, we may find a certain entry, which will be

denoted by z0, in Λλ such that the number of ones to the left side of z0 (not including z0)

is equal to the number of zeroes to the right side of z0 (including z0 itself if and only if

z0 = 0). Now we may number the entries of the partition sequence Λ of λ increasing to

the right side of z0 and decreasing to the left side of z0, so that Λ = (zi)i∈Z.

Note that

|λ| = |{(i, j) : i < j, zi = 1, zj = 0}|.
Actually, each box in λ is uniquely determined by such a pair (i, j) (which differs from the

coordinate of the box). The hook length of such a box is j − i. Therefore, the partition

λ is a t-core partition if and only if there is no i ∈ Z satisfying zi = 1, zi+t = 0 in its

partition sequence Λ = (zi)i∈Z. In addition, if zi = 1, zi+t = 0, by exchanging the values

of zi and zi+t we get a new partition sequence and thus a new partition (which is obtained

by removing a t-hook from λ). Correspondingly, if zi = 0, zi+t = 1, by exchanging the

values of zi and zi+t we get a new partition (which is obtained by adding a t-hook to λ).

The following observation is now obvious.

Lemma 6.1. For any partition λ and a positive integer t, let wt(λ) = (|λ|−|λ(t)|)/t. Then

wt(λ) = |{(i, k) : zi = 1, zi+kt = 0, i ∈ Z, k ∈ N}|.

Also, the following lemma is well-known, and we will use it freely.

Lemma 6.2. Let λ be a partition with partition sequence Λ = (zi)i∈Z. If λ is not a t-core

partition for some positive integer t, then λ has a hook length equal to t, or alternatively,

there exists some integer e such that (ze, ze+t) = (1, 0).

Proof. Since λ is not a t-core partition, there exists (zi, zi+kt) = (1, 0) for some i ∈ Z and

k ∈ N. Suppose k ≥ 2. If zi+(k−1)t = 1, then we let e = i+(k−1)t so that (ze, ze+t) = (1, 0).

In the case that zi+(k−1)t = 0 we consider the pair (zi, zi+(k−1)t) = (1, 0) and repeat the

process to finally get the claimed e. �

Now let p and q be different primes. Let λ be a partition of n. We say that λ is a

(p, q)-isolated partition if there does not exist any other partition of n with the same p-

and q-core as λ.

Lemma 6.3. Let λ be a partition with partition sequence (zi)i∈Z. If λ is (p, q)-isolated

for different primes p and q, then there are no a, b, c, d ∈ Z such that (za, zb) = (1, 0),

(zc, zd) = (0, 1), a ≡ b (mod p), a ≡ c (mod q), and b− a = d− c > 0.

Proof. Assume that there are such a, b, c, d ∈ Z as in the lemma. We will show that λ is

not a (p, q)-isolated partition, which leads to a contradiction.

Observe that d ≡ b (mod q) since b − a = d − c and a ≡ c (mod q). If a = d or b = c,

we have a ≡ d ≡ b ≡ c (mod q). However, since a ≡ b (mod p), it follows that

a ≡ b (mod pq).

The condition (za, zb) = (1, 0) implies that λ has a hook length pq, hence it is not a pq-core.

Removing the hook and then adding a hook of length pq either vertically to the left of the
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partition or horizontally to the right of it, we see that there exists some other partition µ

of |λ| with the same pq-core as that of λ. Therefore

λ(p) = (λ(pq))(p) = (µ(pq))(p) = µ(p),

Similarly, we have λ(q) = µ(q), hence λ is not (p, q)-isolated.

Thus we may assume a 6= d and b 6= c. Let µ be the partition obtained by interchanging

(za, zb) and (zc, zd), so that µ 6= λ. Since b − a = d − c, we have |µ| = |λ| and µ has the

same p- and q-core as λ. Thus λ is again not (p, q)-isolated, as wanted. �

We say that a partition sequence is (p, q)-incongruent if it satisfies the conclusion of

Lemma 6.3. So Lemma 6.3 asserts that the partition sequence of a (p, q)-isolated partition

is (p, q)-incongruent.

Lemma 6.4. Let λ be a partition with partition sequence Λ = (zi)i∈Z. If Λ is (p, q)-

incongruent, then |λ| ≤ |λ(p)|+ |λ(q)|.

Proof. We argue by induction on wq(λ) = (|λ| − |λ(q)|)/q. Clearly, Lemma 6.4 holds for

wq(λ) = 0 since λ = λ(q) in this case.

Now we assume wq(λ) ≥ 1 so that λ is not a q-core partition. In particular, there

exists some integer e such that (ze, ze+q) = (1, 0). Since Λ is (p, q)-incongruent, there does

not exist any integer e′ such that e′ ≡ e (mod p) and (ze′ , ze′+q) = (0, 1). Hence for any

integer f with f ≡ e (mod p), the pair (zf , zf+q) has at most three possibilities: (1, 0),

(0, 0) or (1, 1). Interchanging the values of all pairs (zf , zf+q) with (zf , zf+q) = (1, 0)

and f ≡ e (mod p) in Λ, or equivalently, (index-disjoint) subsequences {ze+kp : k ∈ Z}
and {ze+q+kp : k ∈ Z} in Λ, we obtain a new partition sequence, say Λ′ = (z′i)i∈Z, which

satisfies

z′i =


zi+q, if i ≡ e (mod p)

zi−q, if i ≡ e+ q (mod p)

zi, otherwise.

Let λ′ be the partition corresponding to Λ′. By Lemma 6.1, we have wp(λ
′) = wp(λ) but

wq(λ
′) < wq(λ).

We claim that Λ′ is (p, q)-incongruent. Otherwise, there exist some a, b, c, d ∈ Z such

that (z′a, z
′
b) = (1, 0), (z′c, z

′
d) = (0, 1), a ≡ b (mod p), a ≡ c (mod q), and b− a = d− c.

If a ≡ e (mod p) and c 6≡ e or e+ q (mod q), then

(za+q, zb+q) = (z′a, z
′
b) = (1, 0) and (zc, zd) = (z′c, z

′
d) = (0, 1).

Clearly

a+ q ≡ b+ q (mod p), a+ q ≡ c (mod q) and (b+ q)− (a+ q) = d− c.
It follows that Λ is not (p, q)-incongruent, a contradiction. For the other cases, we similarly

get a contradiction, whence the claim follows.

Thus, by the inductive hypothesis on λ′, we have

|λ′| ≤ |λ′(p)|+ |λ
′
(q)|.
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Furthermore, since λ′ can be obtained from λ by removing some q-hooks , we have

λ′(q) = λ(q).

In addition, it follows from wp(λ
′) = wp(λ) that

|λ′| − |λ′(p)| = |λ| − |λ(p)|.
Thus

|λ| ≤ |λ(p)|+ |λ(q)|.
�

Proof of Theorem 1.9. We first recall some facts about the representation theory

of symmetric groups. It is well known that the complex irreducible characters of the

symmetric group Sn of degree n are naturally labeled by the partitions of n. Thus we may

denote by χλ the complex irreducible characters of G labeled by λ. Now let p be a prime.

For partitions λ and µ of n, the already proved Nakayama Conjecture [29, Theorem 11.1]

asserts that χλ and χµ lie in the same p-block of Sn if and only if they have the same

p-core. So the p-blocks of Sn are parameterized by the p-cores of partitions of n. Let B be

a p-block of Sn corresponding to a p-core κ, and write w = (n− |κ|)/p. According to [29,

Proposition 11.3], the p-block B has a defect group which is conjugate in Sn to a Sylow

p-subgroup of Spw ≤ Sn. (For further details, see [22] or [29].)

Now let q be a prime different from p. Suppose that for some partition λ of n, the

corresponding character χλ ∈ Irr(Sn) satisfies Irr(B(Sn)p) ∩ Irr(B(Sn)q) = {χλ}. This is

equivalent to saying that the partition λ is (p, q)-isolated. Therefore, by Lemmas 6.3 and

6.4, we have

n ≤ |λ(p)|+ |λ(q)|,
or equivalently

(n− |λ(p)|) + (n− |λ(q)|) ≤ n.
It follows that Sn has a subgroup isomorphic to Spw1 ×Sqw2 , where pw1 = n − |λ(p)| and

qw2 = n − |λ(q)|. In particular, the Sylow p-subgroups of Spw1 commute with the Sylow

q-subgroups of Sqw2 . However, they are defect groups of B(Sn)p and B(Sn)q, respectively.

Thus the theorem is proved. �
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