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Abstract

We prove that the automorphism group of a binary self-dual doubly-even
[72, 36, 16] code has order 5, 7, 10, 14 or d where d divides 18 or 24, or it is
A4 × C3.
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1 Introduction

The existence of a binary self-dual doubly-even [72, 36, 16] code remains a long-
standing question, first posed by Sloane [16] in 1973. Determining the automorphism
group of such a code may be a useful first step to construct it. In a series of papers
[7], [13], [14], [10], [4], [5], [19], both its order and structure have been investigated.
The best result in this direction is the following established in [6].

The automorphism group of a binary self-dual doubly-even [72, 36, 16] code has order
5, 7, 10, 14, 56, or a divisor of 72.

In this note we exclude all groups of order 72, 56 and all but one group of order
36, obtaining the following.

Theorem 1 The automorphism group of a binary self-dual doubly-even [72, 36, 16]
code has order 5, 7, 10, 14 or d, where d divides 18 or 24, or it is A4 × C3.

Our proof combines methods from modular representation theory and extensive
computations; the latter were carried out using Magma [1]. The minimum distance
of a code was determined using the algorithm of Brouwer & Zimmermann [3]. We
use the descriptions and identifiers of the groups of certain orders provided by the
SmallGroups library [2].

Let K be the binary field F2 and let KG denote the group algebra of a finite
group G over K. For a subgroup H of G, let KG

H be the trivial H-module induced to
G (see [11, Chap. VII, Section 4]). Note that KG = KG

H for H = ⟨1⟩. If we consider
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H as the ambient space of a code then Hg1, . . . ,Hgs are used as the fixed basis,

where {g1, . . . , gs} is a set of transversal representatives of H in G. In particular,
a ∈ KG

H can be written uniquely as a =
∑s

i=1 aiHgi with ai ∈ K. The natural
non-degenerate bilinear form on KG

H which defines the concept of duality for codes
is given by

(Hgi, Hgj) = δij .

Observe that the form (· , ·) is G-invariant:

(Hgix,Hgjx) = (Hgi, Hgj)

for all x ∈ G and i, j = 1, . . . , s. For a KG-module V we denote by soc (V ) the
largest completely reducible submodule of V . Inductively, the k-th socle soc k(V ) of
V is defined by

soc k(V )/soc k−1(V ) = soc (V/soc k−1(V )).

For other notation and basic facts about modular representation theory, we refer
the reader to [11, Chap. VII].

Now suppose that C is a binary linear code of length n with automorphism group
G. Thus C is a subspace of the vector space V = Kn. Via the action of G as a group
of permutations on the coordinate positions, the space V carries the structure of a
(right) KG-module. Since C is invariant under G, we deduce that C is a submodule
of V . The module structure of the ambient space V can be described as follows. If
i1, . . . , is are representatives of the orbits Ω1, . . . ,Ωs of G on Ω = {1, . . . , n} and if
Gi denotes the stabilizer of i ∈ Ω in G, then

V = Kn = KG
Gi1

⊥ . . . ⊥ KG
Gis

. (1)

Furthermore, if |Ωij | = |G : Gij | = nj then the elements in the first component KG
Gi1

have non-zero entries in the first n1 positions, the elements in the second component
KG

Gi2
have non-zero entries in positions n1 + 1, . . . , n1 + n2, and so on. The bilinear

form on V is the orthogonal sum of the bilinear forms on the components KG
Gij

.

2 Preliminaries

As above let V denote the ambient space of a binary code C with automorphism
group G.

Lemma 2 If V = Kn = KG and C = C⊥ is doubly-even then the Sylow 2-subgroup
of G is not cyclic.

Proof. See [17], or [12, Theorem 4.4]. □
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Lemma 3 Let V = Kn = KG and suppose that all projective indecomposable mod-
ules are self-dual and occur with multiplicity 1 in a direct decomposition of V . If
C = C⊥ then

soc (C) = soc (V ) = soc (KG).

Proof. Write V = KG = P1 ⊕ . . .⊕Pm with projective indecomposable modules Pi.
By assumption, the Pi are pairwise non-isomorphic. Furthermore,

soc (V ) = soc (P1)⊕ . . .⊕ soc (Pm),

and soc (Pi) = Si for pairwise non-isomorphic simple modules Si. Suppose that, for
some i, soc (Pi) ̸⊆ soc (C). Thus C ∩ Pi = 0. According to [18]

V/C = V/C⊥ ∼= C∗.

Thus Pi is (up to isomorphism) a submodule of C∗. Since Pi is projective, and so
injective (see [11, Chap. VII, Theorem 7.8]), the submodule Pi is a direct summand
of C∗. It follows that Pi

∼= P ∗
i is a direct summand in (C∗)∗ ∼= C. Thus Pi occurs

with multiplicity at least twice in V as a direct summand, a contradiction to the
Krull-Schmidt Theorem (see [9, Chap. I, Theorem 11.4]). □

In order to carry out computations successfully, we need a finer splitting for
the ambient space V as given in (1). Let ˆ : KG → KG denote the antialgebra
automorphism of KG defined by g → g−1 for g ∈ G. Let

1 = f1 + . . .+ ft

be a decomposition of 1 ∈ KG into central idempotents fi ∈ KG with f̂i = fi.
The latter condition means that fiKG ∼= (fiKG)∗ as KG-modules. Finally, we put
Vi = V fi and Ci = Cfi ⊆ Vi for i = 1, . . . , t.

Lemma 4 With this notation we have

a) V = V1 ⊥ . . . ⊥ Vt and C = C1 ⊥ . . . ⊥ Ct as KG-modules.

b) If C = C⊥ then Ci is a self-dual code in Vi for i = 1, . . . , t.

Proof. a) Clearly, V = V f1⊕. . .⊕V ft and C = Cf1⊕. . .⊕Cft by standard arguments
(see [11, Chap. VII, Theorem 12.1]). Since the idempotents fi are central, the spaces
V fi and Cfi are KG-modules. It remains to prove that the decompositions are
orthogonal. Let v and w be elements in V = Kn. Since G is a group of isometries
on V , we have (vg, w) = (v, wg−1) for all g ∈ G. In particular,

(Vi, Vj) = (V fi, V fj) = (V, V fj f̂i) = (V, V fjfi)

since f̂i = fi. But fjfi = 0 for i ̸= j which yields (Vi, Vj) = 0 for i ̸= j. This proves
that the decomposition for each of V and C is orthogonal.
b) Since C = C⊥ in V and Ci ⊆ Vi, it follows that Ci is a self-dual code in Vi. □
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2.1 The basic algorithm

Let C denote a binary self-dual doubly-even [72, 36, 16] code. We use the following
algorithm to demonstrate that a specified group G is not the automorphism group
of C.

First, we search for pairwise orthogonal central idempotents inKG, say f1, . . . , ft,
such that f̂i = fi for i = 1, . . . , t and

1 = f1 + . . .+ ft.

Lemma 4 implies that C = Cf1 ⊥ . . . ⊥ Cft where Cfi is a self-dual doubly-even
code in V fi.

Next we carry out the following steps:

Step 1. In each V fi we compute all self-dual doubly-even and G-invariant codes, say
Ui, of minimum distance at least 16. We call such codes good. Let Li be a
listing of all good codes in V fi.

Step 2. We construct all modules U in L := {U = U1 + . . .+ Ut | Ui ∈ Li}.

Step 3. We compute the minimum distance of every U ∈ L.

Suppose that the minimum distance for all U ∈ L computed in Step 3 is always
strictly smaller than 16. Since C is one particular module in L, the group G cannot
be the automorphism group of C.

In the remainder, let C always be a binary self-dual doubly-even [72, 36, 16] code
with automorphism group G.

3 Excluding |G| = 72

Throughout this section we assume that |G| = 72. Since elements of order 2 and 3
act fixed-point-freely on the 72 coordinate positions (see [4] and [5]), the action of
G on the positions is regular. Thus C is a self-dual doubly-even G-invariant code in
the group algebra KG.

To show that none of the 50 groups of order 72 occurs as an automorphism
group of C, we proceed as follows. By Lemma 2, we may assume that the Sylow
2-subgroup of G is not cyclic. Among the remaining groups, precisely three do not
have a normal subgroup of order 3. They are:

(i) G = (C3 × C3).Q8

(ii) G = (C3 × C3).D8

(iii) G = (C3 × C3).(C4 × C2)
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where Q8 is a quaternion group of order 8, D8 a dihedral group of order 8 and Cn

is cyclic of order n.
For G of type (i), the ambient space KG has exactly 602361 submodules of

dimension 36. All have minimum distance strictly smaller than 16. Thus G cannot
be the automorphism group of C.

Next we consider the group G of type (ii). Let H = ⟨x, y⟩ denote the normal
Sylow 3-subgroup of G. The action of D8 on H has three orbits: 1; the orbit
x, x2, y, y2; and the orbit xy, x2y, xy2, x2y2. The group algebra KG consists of three
blocks generated by the principal block idempotent f1 =

∑
h∈H h and two other

block idempotents f2 = x+x2+ y+ y2 resp. f3 = xy+x2y+xy2+x2y2. Note that
fi = f̂i for i = 1, 2, 3. Furthermore, dimKGf1 = 8 and dimKGf2 = KGf3 = 32.
We now follow the three steps of the algorithm described above.

Step 1. The component KGf1 contains exactly 6 modules U1 ∈ L1. In each of KGf2
and KGf3 there are 90 modules U2 ∈ L2 resp. U3 ∈ L3.

Step 2. We compute all 6× 90× 90 modules U ∈ L.

Step 3. All modules U ∈ L have minimum distance strictly smaller than 16.

Thus G is not the automorphism group of C.
Finally, the group in (iii) can be ruled out similarly: we check 4×90×90 modules

U ∈ L.
There remain 40 groups of order 72 which have a normal subgroup H of order

3. Let f =
∑

h∈H h. Clearly, f is a central idempotent in KG which satisfies f̂ = f .
We put f1 = f and f2 = 1−f and apply the algorithm again. For 37 of these groups,
all relevant U ∈ L have minimum distance strictly smaller than 16. Consequently
these groups do not occur as automorphism groups.

In three cases it was not possible to compute directly L2. These are:

(α) G = [(C3 ×C3)× (C2 ×C2)]⟨t⟩ where t inverts all elements of order 3 and the
Sylow 2-subgroup is a dihedral group of order 8.

(β) G = C3 × C2 ×A4 where A4 is the alternating group on 4 letters.

(γ) G = (C3×A4)⟨t⟩ where the involution t acts nontrivially on C3 and A4⟨t⟩ ∼= S4.

In case (α) the group algebra consists of 5 blocks. Thus we have the decompo-
sition 1 = f1 + . . . + f5 with block idempotents fi. Since each fi ∈ KT where T is
a Sylow 3-subgroup of G and t inverts all 3-elements, all simple KG-modules are
self-dual. In particular f̂i = fi for all i. We apply the algorithm again. In Step 1
we get 4 spaces U1 in KGf1 and 18 in each block KGfi for i = 2, . . . , 5. Step 2
produces 629856 modules U . Step 3 shows that all have minimum distance strictly
smaller than 16. This eliminates (α).
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Let G = C3 × C2 × A4. Since O2(G) is in the kernel of every simple module
(see [11, Chap. VII, Theorem 13.4]), the group algebra KG has exactly 5 simple
modules which are all self-dual. Furthermore, KG is a direct sum of non-isomorphic
projective indecomposable modules. Thus the assumptions of Lemma 3 are satisfied.
Moreover, KG has exactly two block idempotents, namely f1 = 1+ x+ x2 where x
generates the normal subgroup of order 3 and f2 = 1−f1. It yields dimKGf1 = 24,
hence dimKGf2 = 48. The block KGf2 contains exactly three simple modules, all
of dimension 2. Lemma 3 implies that soc (Cf2) = soc (KGf2). We compute now
the spaces U = U1 + soc (KGf2) for all U1 ∈ L1. (Here we take only a particular
subspace of KGf2 in Step 1 which is contained in Cf2 ≤ C.) All such modules have
minimum distance strictly smaller than 16. Thus a group of type (β) cannot be the
automorphism group of C.

In the last case G = (C3×A4)⟨t⟩ where the involution t acts non-trivially on C3

and A4⟨t⟩ ∼= S4. We again put f1 = 1+x+x2 where x generates the normal subgroup
of order 3 and f2 = 1 − f1. As in case (β), dim KGf1 = 24 and dim KGf2 = 48.
The block KGf1 contains 7607 submodules. Exactly 48 of them are good. The
component KGf2 has 9576333 submodules. Exactly 5184 are good. All modules in
L have minimum distance strictly smaller than 16. Thus we have eliminated G and
this completes the proof for |G| = 72.

4 Excluding |G| = 56

Throughout this section we assume that |G| = 56. Let T denote a Sylow 7-subgroup
of G.

Lemma 5 G contains a normal subgroup H of order 8 isomorphic to C2 ×C2 ×C2

on which an element of order 7 acts faithfully. Moreover, the action of G on the 72
coordinate positions has three orbits of lengths 56, 8, 8.

Proof. Observe that [6, Lemma 2 b)] implies |NG(T )| = 7 or 14. Since the index
|G : NG(T )| ≡ 1 mod 7 we get |NG(T )| = 7. Thus G has exactly 8 Sylow 7-
subgroups and contains 6 · 8 = 48 elements of order 7. Hence the Sylow 2-subgroup
of G is normal. Since a 7-element does not centralize an involution, G has exactly 7
involutions. This implies that the Sylow 2-subgroup is elementary abelian. By [4],
an involution has no fixed points, and by [8], an element of order 7 has exactly two
fixed points. Thus the Cauchy-Frobenius Lemma [15] implies that the action of G
on the coordinate positions has

1

56
(56 + 8 · 6 · 2) = 3
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orbits, say of lengths m1,m2,m3. Since mi | 56 and m1+m2+m3 = 72, we find the
unique solution m1 = 56,m2 = m3 = 8 (up to renumbering). □

Just one of the 13 groups of order 56, namely 56#11 in the notation of the
SmallGroups library, satisfies Lemma 5.

Lemma 6 Let G be 56#11 having group algebra KG.

a) V = K72 = KG ⊕ P1 ⊕ P2 where P1
∼= P2

∼= KG
T is the projective cover of

the trivial KG-module. The elements of KG have non-zero entries only in the
first 56 positions, the elements of P1 in position 57 up to 64 and P2 in the last
8 positions.

b) C ∩ (P1 ⊕ P2) = {0, v} where v has entry 1 exactly in the last 16 coordinates.

c) If C0 = KG ∩ C ≤ KG then C0 contains the all one-vector of KG and
dim C0 = 21.

Proof. a) This follows immediately by Lemma 5.
b) Note that P1 ⊕ P2 has non-zero entries at most in the last 16 coordinates. Thus,
if

C ∩ (P1 ⊕ P2) ̸= 0

then the intersection contains v as the only non-zero vector, since the minimum
weight of C is 16. Suppose that

C ∩ (P1 ⊕ P2) = 0.

In this case the projective module P1 ⊕ P2 is (up to isomorphism) a submodule of
the factor module

K72/C = K72/C⊥ ∼= C∗,

hence a direct summand since P1 ⊕ P2 is injective. It follows that

(P1 ⊕ P2)
∗ ∼= P ∗

1 ⊕ P ∗
2
∼= P1 ⊕ P2

is a direct summand of C∗∗ ∼= C. Therefore the projective cover of the trivial module
has multiplicity at least 4 as a direct summand in K72. This contradicts the fact
that V contains the projective cover of the trivial module exactly three times since
KG contains it only once.
c) Since C contains both the all one-vector of length 72 and v, it contains their sum
which has a 1 as entry exactly in the first 56 coordinates. By repeated shortening
of C (16 times), we see that dim C0 = 21 since dimC = 36. □

Lemma 7 Let G be 56#11. Its group algebra KG has the following properties.
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a) There are (up to isomorphism) exactly three simple modules: the trivial module
1G and two modules V resp. V ∗ with V ̸∼= V ∗ both of dimension 3.

b) The projective cover P (1G) of the trivial module is generated by the (non cen-
tral) idempotent e =

∑
x∈T x.

c) P (1G) is uniserial with composition factors 1G, V, V
∗, 1G.

d) The Loewy lengths of the projective covers P (V ) and P (V ∗) of V resp. V ∗ are
4 for both.

e) C0 ≤ soc 3(KG).

Proof. a) Over a large field of characteristic 2, the group G has exactly 7 simple
modules since the normal Sylow 2-subgroup H is in the kernel of any simple module.
Over the binary field K we have only three simple modules 1G, V and V ∗.
b) This is clear since P (1G) is the trivial module of a 2-complement of G induced
to G.
c) P (1G) considered as an H-module is the regular module KH. Since T acts on
KH by conjugation and P (1G) ∼= P (1G)

∗ the assertion follows immediately.
d) This is a consequence of the fact that P (V ) ∼= P (1G) ⊗ V resp. P (V ∗) ∼=
P (1G)⊗ V ∗.
e) Note that KG = P (1G)⊕ P (V )⊕ P (V ∗). Since the weights of the code words in
C0 are divisible by 2 the subcode C0 is contained in the augmentation ideal of KG.
Thus, if C0 ̸⊆ soc 3(KG) then C0 contains a direct summand isomorphic to P (V ) or
P (V ∗). This contradicts the fact that dim C0 = 21 and dim P (V ) = dimP (V ∗) =
24. □

To excludeG as an automorphism group of C we proceed as follows. In soc 3(KG),
we compute all self-orthogonal submodules of dimension 21. The 1394667 such mod-
ules all have minimum distance strictly less than 16.

Hence a group of order 56 is not an automorphism group of a binary self-dual
doubly-even [72, 36, 16] code.

5 Excluding |G| = 36

Throughout this section we assume that |G| = 36. Since neither involutions nor
elements of order 3 have fixed points (see [4] and [5]), the action of G on the 72 co-
ordinate positions is fixed-point-freely. Thus the ambient space K72 is an orthogonal
sum of two copies of the regular module KG:

V = K72 = KG ⊥ KG,
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# Group Dimensions of simple modules dim V fi dim soc k(V ft)

1 D18 × C2 1, 2, 6 8, 16, 48 24, 48

2 C9 × C4 1, 2, 6 8, 16, 48 12, 24, 36, 48

3 1, 2, 6 24, 48 12, 36, 48

4 C9 · C4 1, 2, 6 8, 16, 48 24, 48

5 C9 × C2 × C2 1, 2, 6 8, 16, 48 12, 36, 48

11 A4 × C3 1, 2, 2, 2, 2 24, 48 12, 36, 48

Table 1: Data for certain groups of order 36

where the first KG has non-zero entries in the first 36 positions and the second in
the last 36.

There are (up to isomorphism) 14 groups of order 36. One easily checks with
Magma that for all of these groups the simple modules over K are self-dual. Thus
the blocks of KG are self-dual and consequently we may write

1 = f1 + . . .+ ft

with block idempotents fi = f̂i ∈ KG. If G is 2-nilpotent then each block contains
(up to isomorphism) exactly one simple module (see [11, Chap. VII, Theorem 14.9]).
This is true for all but two groups: 36#3 and 36#11.

We now proceed as follows. Let Li be a listing of good codes in V fi for i =
1, . . . , t, and let L consist of all codes U = U1 + . . .+ Ut with Ui ∈ Li.

Case 1. For each group 36#i with 6 ≤ i ≤ 10 and 12 ≤ i ≤ 14, we compute

U = U1 + . . .+ Ut

where Uj runs over all codes in Lj for j = 1, . . . , t. None of the codes U is doubly-even
and of minimum distance at least 16. Hence none of these groups is an automorphism
group. (Of course, we can terminate our investigation for a particular group if the set
of modules U1+ . . .+Us, where s < t and the Uj are running through all modules in
Lij with ij ̸= ik for j ̸= k, does not contain a doubly-even code of minimum distance
at least 16.)

Thus it remains to consider 36#i for i = 1, 2, 3, 4, 5, 11. In Table 1, for each
we list dim V fi for i = 1, . . . , t and the dimensions of the socle series of V ft, the
component of dimension 48. Where the group has a name indicating its structure,
we use this.

Lemma 8 Let f = f̂ be a central idempotent of KG and suppose that KGf contains
only one simple module (up to isomorphism) as composition factor. Then

2 dim soc (Cf) ≥ dim soc (V f).
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Proof. Let S be the unique simple module belonging to KGf and suppose that
soc (KGf) contains S with multiplicity m. Since V = KG ⊕KG, the socle of V f
has in a direct decomposition 2m direct summands (isomorphic to S). Suppose that
soc (Cf) has m′ < m direct summands. Then

Cf ≤ P1 ⊕ . . .⊕ Pm′ ≤ P1 ⊕ . . .⊕ Pm′ ⊕ . . .⊕ P2m = V f

where all Pi are isomorphic to the projective cover P of S. Note that P ∼= P ∗ and

V f/Cf = V f/(Cf)⊥ ∼= (Cf)∗.

As in Lemma 3, (Cf)∗ contains more direct summands isomorphic to P than Cf .
This contradicts the Krull-Schmidt Theorem (see [9, Chap. I, Theorem 11.4]). □

Case 2. To deal with the groups 36#i for i = 1, 4, we modify the computation
of all good codes in the component Vt := V ft of dimension 48. Note that the
simple module in Vt has dimension 6 and the socle series of Vt has dimensions 24, 48.
Applying Lemma 8, we proceed as follows.

(i) We compute all submodules of dimension 12 in soc (Vt).

(ii) For each submodule M in (i) we compute all simple submodules in Vt/M
and take the pullback in Vt. This leads to a list, say M1, of submodules of
dimension 18 in Vt.

(iii) We remove from M1 all submodules which are not good.

(iv) For all U in M1 we compute all simple submodules of Vt/U and take the
pullback in Vt. This leads to a list M2 of submodules of dimension 24 in Vt.

(v) We remove from M2 all modules which are not good and obtain Lt.

For 36#1 the list M1 is already empty which rules out this group. For 36#4 we
obtain a non-empty list Lt and proceed as in Case 1 to rule out this group.

Case 3. Next we consider 36#3 and 36#5. Both groups have exactly three simple
modules which are of dimension 1, 2 and 6 respectively. Since 36#5 is 2-nilpotent,
there are three blocks. But 36#3 is not 2-nilpotent and has two blocks. In this case
the principal block contains the trivial module and the simple module of dimension
2. Thus both groups have a block which contains the simple module, say W , of
dimension 6. If f is the corresponding block idempotent then V f = P1 ⊥ P2 with
Pi

∼= P (W ), which has socle series

W
W W

W
.
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We rule out both groups using the algorithm described in Case 1. To construct the
list L of good codes in V f , we distinguish two cases:

(α) good codes which contain soc (V f);

(β) good codes which have a simple socle.

To find the good codes in (α) we apply the following result.

Lemma 9 Let Cf be a good code in V f with soc (V f) ≤ Cf . Then Cf ≤ soc 2(V f).

Proof. If soc (V f) ≤ Cf then (w, 0) ∈ Cf ≤ V f = P1 ⊥ P2 for all w ∈ soc (P1).
Note that (Cf)⊥ ∩ V f = Cf since Cf is good. Let (x, y) ∈ Cf . Thus

0 = ((w, 0), (x, y)) = (w, x)

for all w ∈ soc (P1). Since the restriction of (· , ·) to P1 is non-degenerate, x must
be an element of soc 2(P1) since it is the only maximal submodule in P1. By a sym-
metry argument, we see that y ∈ soc 2(P2). Thus (x, y) ∈ soc 2(P1) ⊥ soc 2(P2) =
soc 2(V f). □

To construct the list of good codes in (α) we search, according to Lemma 9, for
all submodules in soc 2(V f) of dimension 12 and take their pullbacks in V f . The
resulting list Lα contains only those pullbacks which are good. We combine the
modules from Lα with the good modules from the other blocks, and establish that
all resulting codes have minimum distance strictly smaller than 16.

Lemma 10 A good code in (β) is a projective indecomposable module.

Proof. Let Cf be a code in the list (β). Since the socle of Cf is simple, Cf is a
submodule of the projective cover P of soc (Cf). Since dim Cf = 24 = dim P , we
deduce that Cf = P . □

To obtain the list of good codes in (β) we proceed as follows. First we search
for all submodules of V f/soc (V f) of dimension 18 by taking maximal submodules
of maximal submodules. By Lemma 10, we only consider those which have a 12-
dimensional socle. In the next step we take the pullbacks in V f of the remaining
codes, which have dimension 30, and construct all their maximal submodules. Fi-
nally we test self-orthogonality and minimum distance at least 16. For both 36#3
and 36#5, the resulting list is empty.

Case 4. The remaining group G is 36#11 and is isomorphic to A4 ×C3. There are
5 simple modules 1G,W1,W2,W3,W4 of dimension 1, 2, 2, 2, 2 and two blocks. The
principal block contains 1G and say W1. Furthermore,

KG = (P0 ⊕ P1) ⊥ (P2 ⊕ P3 ⊕ P4) = KGf1 ⊥ KGf2

11



with block idempotents f1 = 1+ y + y2 where C3 = ⟨y⟩ and f2 = y + y2. Note that
f1 defines the principal block. The structures of the blocks are as follows:

KGf1 =
1 W1

W1 ⊕ W1 1 1
1 W1

KGf2 =
W2 W3 W4

W3 W4 ⊕ W2 W4 ⊕ W2 W3

W2 W3 W4

.

It is easy to determine that L1 contains exactly 192 good codes in V f1. However
we are unable to determine the good codes in V f2 and hence we are not able to
eliminate this case.
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