On the automorphism group of a binary self-dual doubly-even [72,36,16] code

E.A. O'Brien and Wolfgang Willems

Abstract

We prove that the automorphism group of a binary self-dual doubly-even [$72,36,16$] code has order $5,7,10,14$ or d where d divides 18 or 24 , or it is $A_{4} \times C_{3}$.

Keywords Automorphism group, extremal code of length 72

1 Introduction

The existence of a binary self-dual doubly-even $[72,36,16]$ code remains a longstanding question, first posed by Sloane [16] in 1973. Determining the automorphism group of such a code may be a useful first step to construct it. In a series of papers [7], [13], [14], [10], [4], [5], [19], both its order and structure have been investigated. The best result in this direction is the following established in [6].
The automorphism group of a binary self-dual doubly-even $[72,36,16]$ code has order $5,7,10,14,56$, or a divisor of 72 .

In this note we exclude all groups of order 72,56 and all but one group of order 36 , obtaining the following.

Theorem 1 The automorphism group of a binary self-dual doubly-even [72, 36, 16] code has order $5,7,10,14$ or d, where d divides 18 or 24 , or it is $A_{4} \times C_{3}$.

Our proof combines methods from modular representation theory and extensive computations; the latter were carried out using Magma [1]. The minimum distance of a code was determined using the algorithm of Brouwer \& Zimmermann [3]. We use the descriptions and identifiers of the groups of certain orders provided by the SmallGroups library [2].

Let K be the binary field \mathbb{F}_{2} and let $K G$ denote the group algebra of a finite group G over K. For a subgroup H of G, let K_{H}^{G} be the trivial H-module induced to G (see [11, Chap. VII, Section 4]). Note that $K G=K_{H}^{G}$ for $H=\langle 1\rangle$. If we consider
K_{H}^{G} as the ambient space of a code then $H g_{1}, \ldots, H g_{s}$ are used as the fixed basis, where $\left\{g_{1}, \ldots, g_{s}\right\}$ is a set of transversal representatives of H in G. In particular, $a \in K_{H}^{G}$ can be written uniquely as $a=\sum_{i=1}^{s} a_{i} H g_{i}$ with $a_{i} \in K$. The natural non-degenerate bilinear form on K_{H}^{G} which defines the concept of duality for codes is given by

$$
\left(H g_{i}, H g_{j}\right)=\delta_{i j} .
$$

Observe that the form (\cdot, \cdot) is G-invariant:

$$
\left(H g_{i} x, H g_{j} x\right)=\left(H g_{i}, H g_{j}\right)
$$

for all $x \in G$ and $i, j=1, \ldots, s$. For a $K G$-module V we denote by $\operatorname{soc}(V)$ the largest completely reducible submodule of V. Inductively, the k-th $\operatorname{socle~soc}_{k}(V)$ of V is defined by

$$
\operatorname{soc}_{k}(V) / \operatorname{soc}_{k-1}(V)=\operatorname{soc}\left(V / \operatorname{soc}_{k-1}(V)\right) .
$$

For other notation and basic facts about modular representation theory, we refer the reader to [11, Chap. VII].

Now suppose that C is a binary linear code of length n with automorphism group G. Thus C is a subspace of the vector space $V=K^{n}$. Via the action of G as a group of permutations on the coordinate positions, the space V carries the structure of a (right) $K G$-module. Since C is invariant under G, we deduce that C is a submodule of V. The module structure of the ambient space V can be described as follows. If i_{1}, \ldots, i_{s} are representatives of the orbits $\Omega_{1}, \ldots, \Omega_{s}$ of G on $\Omega=\{1, \ldots, n\}$ and if G_{i} denotes the stabilizer of $i \in \Omega$ in G, then

$$
\begin{equation*}
V=K^{n}=K_{G_{i_{1}}}^{G} \perp \ldots \perp K_{G_{i_{i}}}^{G} . \tag{1}
\end{equation*}
$$

Furthermore, if $\left|\Omega_{i_{j}}\right|=\left|G: G_{i_{j}}\right|=n_{j}$ then the elements in the first component $K_{G_{i_{1}}}^{G}$ have non-zero entries in the first n_{1} positions, the elements in the second component $K_{G_{i_{2}}}^{G}$ have non-zero entries in positions $n_{1}+1, \ldots, n_{1}+n_{2}$, and so on. The bilinear form on V is the orthogonal sum of the bilinear forms on the components $K_{G_{i_{j}}}^{G}$.

2 Preliminaries

As above let V denote the ambient space of a binary code C with automorphism group G.

Lemma 2 If $V=K^{n}=K G$ and $C=C^{\perp}$ is doubly-even then the Sylow 2-subgroup of G is not cyclic.

Proof. See [17], or [12, Theorem 4.4].

Lemma 3 Let $V=K^{n}=K G$ and suppose that all projective indecomposable modules are self-dual and occur with multiplicity 1 in a direct decomposition of V. If $C=C^{\perp}$ then

$$
\operatorname{soc}(C)=\operatorname{soc}(V)=\operatorname{soc}(K G) .
$$

Proof. Write $V=K G=P_{1} \oplus \ldots \oplus P_{m}$ with projective indecomposable modules P_{i}. By assumption, the P_{i} are pairwise non-isomorphic. Furthermore,

$$
\operatorname{soc}(V)=\operatorname{soc}\left(P_{1}\right) \oplus \ldots \oplus \operatorname{soc}\left(P_{m}\right),
$$

and $\operatorname{soc}\left(P_{i}\right)=S_{i}$ for pairwise non-isomorphic simple modules S_{i}. Suppose that, for some $i, \operatorname{soc}\left(P_{i}\right) \nsubseteq \operatorname{soc}(C)$. Thus $C \cap P_{i}=0$. According to [18]

$$
V / C=V / C^{\perp} \cong C^{*} .
$$

Thus P_{i} is (up to isomorphism) a submodule of C^{*}. Since P_{i} is projective, and so injective (see [11, Chap. VII, Theorem 7.8]), the submodule P_{i} is a direct summand of C^{*}. It follows that $P_{i} \cong P_{i}^{*}$ is a direct summand in $\left(C^{*}\right)^{*} \cong C$. Thus P_{i} occurs with multiplicity at least twice in V as a direct summand, a contradiction to the Krull-Schmidt Theorem (see [9, Chap. I, Theorem 11.4]).

In order to carry out computations successfully, we need a finer splitting for the ambient space V as given in (1). Let ${ }^{\wedge}: K G \rightarrow K G$ denote the antialgebra automorphism of $K G$ defined by $g \rightarrow g^{-1}$ for $g \in G$. Let

$$
1=f_{1}+\ldots+f_{t}
$$

be a decomposition of $1 \in K G$ into central idempotents $f_{i} \in K G$ with $\hat{f}_{i}=f_{i}$. The latter condition means that $f_{i} K G \cong\left(f_{i} K G\right)^{*}$ as $K G$-modules. Finally, we put $V_{i}=V f_{i}$ and $C_{i}=C f_{i} \subseteq V_{i}$ for $i=1, \ldots, t$.

Lemma 4 With this notation we have
a) $V=V_{1} \perp \ldots \perp V_{t}$ and $C=C_{1} \perp \ldots \perp C_{t}$ as $K G$-modules.
b) If $C=C^{\perp}$ then C_{i} is a self-dual code in V_{i} for $i=1, \ldots, t$.

Proof. a) Clearly, $V=V f_{1} \oplus \ldots \oplus V f_{t}$ and $C=C f_{1} \oplus \ldots \oplus C f_{t}$ by standard arguments (see [11, Chap. VII, Theorem 12.1]). Since the idempotents f_{i} are central, the spaces $V f_{i}$ and $C f_{i}$ are $K G$-modules. It remains to prove that the decompositions are orthogonal. Let v and w be elements in $V=K^{n}$. Since G is a group of isometries on V, we have $(v g, w)=\left(v, w g^{-1}\right)$ for all $g \in G$. In particular,

$$
\left(V_{i}, V_{j}\right)=\left(V f_{i}, V f_{j}\right)=\left(V, V f_{j} \hat{f}_{i}\right)=\left(V, V f_{j} f_{i}\right)
$$

since $\hat{f}_{i}=f_{i}$. But $f_{j} f_{i}=0$ for $i \neq j$ which yields $\left(V_{i}, V_{j}\right)=0$ for $i \neq j$. This proves that the decomposition for each of V and C is orthogonal.
b) Since $C=C^{\perp}$ in V and $C_{i} \subseteq V_{i}$, it follows that C_{i} is a self-dual code in V_{i}.

2.1 The basic algorithm

Let C denote a binary self-dual doubly-even $[72,36,16]$ code. We use the following algorithm to demonstrate that a specified group G is not the automorphism group of C.

First, we search for pairwise orthogonal central idempotents in $K G$, say f_{1}, \ldots, f_{t}, such that $\hat{f}_{i}=f_{i}$ for $i=1, \ldots, t$ and

$$
1=f_{1}+\ldots+f_{t} .
$$

Lemma 4 implies that $C=C f_{1} \perp \ldots \perp C f_{t}$ where $C f_{i}$ is a self-dual doubly-even code in $V f_{i}$.

Next we carry out the following steps:
Step 1. In each $V f_{i}$ we compute all self-dual doubly-even and G-invariant codes, say U_{i}, of minimum distance at least 16 . We call such codes good. Let \mathcal{L}_{i} be a listing of all good codes in $V f_{i}$.

Step 2. We construct all modules U in $\mathcal{L}:=\left\{U=U_{1}+\ldots+U_{t} \mid U_{i} \in \mathcal{L}_{i}\right\}$.
Step 3 . We compute the minimum distance of every $U \in \mathcal{L}$.
Suppose that the minimum distance for all $U \in \mathcal{L}$ computed in Step 3 is always strictly smaller than 16 . Since C is one particular module in \mathcal{L}, the group G cannot be the automorphism group of C.

In the remainder, let C always be a binary self-dual doubly-even $[72,36,16]$ code with automorphism group G.

3 Excluding $|G|=72$

Throughout this section we assume that $|G|=72$. Since elements of order 2 and 3 act fixed-point-freely on the 72 coordinate positions (see [4] and [5]), the action of G on the positions is regular. Thus C is a self-dual doubly-even G-invariant code in the group algebra $K G$.

To show that none of the 50 groups of order 72 occurs as an automorphism group of C, we proceed as follows. By Lemma 2, we may assume that the Sylow 2 -subgroup of G is not cyclic. Among the remaining groups, precisely three do not have a normal subgroup of order 3. They are:
(i) $G=\left(C_{3} \times C_{3}\right) \cdot Q_{8}$
(ii) $G=\left(C_{3} \times C_{3}\right) \cdot D_{8}$
(iii) $G=\left(C_{3} \times C_{3}\right) \cdot\left(C_{4} \times C_{2}\right)$
where Q_{8} is a quaternion group of order $8, D_{8}$ a dihedral group of order 8 and C_{n} is cyclic of order n.

For G of type (i), the ambient space $K G$ has exactly 602361 submodules of dimension 36. All have minimum distance strictly smaller than 16 . Thus G cannot be the automorphism group of C.

Next we consider the group G of type (ii). Let $H=\langle x, y\rangle$ denote the normal Sylow 3-subgroup of G. The action of D_{8} on H has three orbits: 1; the orbit x, x^{2}, y, y^{2}; and the orbit $x y, x^{2} y, x y^{2}, x^{2} y^{2}$. The group algebra $K G$ consists of three blocks generated by the principal block idempotent $f_{1}=\sum_{h \in H} h$ and two other block idempotents $f_{2}=x+x^{2}+y+y^{2}$ resp. $f_{3}=x y+x^{2} y+x y^{2}+x^{2} y^{2}$. Note that $f_{i}=\hat{f}_{i}$ for $i=1,2,3$. Furthermore, $\operatorname{dim} K G f_{1}=8$ and $\operatorname{dim} K G f_{2}=K G f_{3}=32$. We now follow the three steps of the algorithm described above.

Step 1. The component $K G f_{1}$ contains exactly 6 modules $U_{1} \in \mathcal{L}_{1}$. In each of $K G f_{2}$ and $K G f_{3}$ there are 90 modules $U_{2} \in \mathcal{L}_{2}$ resp. $U_{3} \in \mathcal{L}_{3}$.

Step 2. We compute all $6 \times 90 \times 90$ modules $U \in \mathcal{L}$.
Step 3. All modules $U \in \mathcal{L}$ have minimum distance strictly smaller than 16 .
Thus G is not the automorphism group of C.
Finally, the group in (iii) can be ruled out similarly: we check $4 \times 90 \times 90$ modules $U \in \mathcal{L}$.

There remain 40 groups of order 72 which have a normal subgroup H of order 3. Let $f=\sum_{h \in H} h$. Clearly, f is a central idempotent in $K G$ which satisfies $\hat{f}=f$. We put $f_{1}=f$ and $f_{2}=1-f$ and apply the algorithm again. For 37 of these groups, all relevant $U \in \mathcal{L}$ have minimum distance strictly smaller than 16. Consequently these groups do not occur as automorphism groups.

In three cases it was not possible to compute directly \mathcal{L}_{2}. These are:
(α) $G=\left[\left(C_{3} \times C_{3}\right) \times\left(C_{2} \times C_{2}\right)\right]\langle t\rangle$ where t inverts all elements of order 3 and the Sylow 2-subgroup is a dihedral group of order 8 .
(β) $G=C_{3} \times C_{2} \times \mathrm{A}_{4}$ where A_{4} is the alternating group on 4 letters.
$(\gamma) G=\left(C_{3} \times \mathrm{A}_{4}\right)\langle t\rangle$ where the involution t acts nontrivially on C_{3} and $\mathrm{A}_{4}\langle t\rangle \cong \mathrm{S}_{4}$.
In case (α) the group algebra consists of 5 blocks. Thus we have the decomposition $1=f_{1}+\ldots+f_{5}$ with block idempotents f_{i}. Since each $f_{i} \in K T$ where T is a Sylow 3 -subgroup of G and t inverts all 3 -elements, all simple $K G$-modules are self-dual. In particular $\hat{f}_{i}=f_{i}$ for all i. We apply the algorithm again. In Step 1 we get 4 spaces U_{1} in $K G f_{1}$ and 18 in each block $K G f_{i}$ for $i=2, \ldots, 5$. Step 2 produces 629856 modules U. Step 3 shows that all have minimum distance strictly smaller than 16 . This eliminates (α).

Let $G=C_{3} \times C_{2} \times \mathrm{A}_{4}$. Since $O_{2}(G)$ is in the kernel of every simple module (see [11, Chap. VII, Theorem 13.4]), the group algebra $K G$ has exactly 5 simple modules which are all self-dual. Furthermore, $K G$ is a direct sum of non-isomorphic projective indecomposable modules. Thus the assumptions of Lemma 3 are satisfied. Moreover, $K G$ has exactly two block idempotents, namely $f_{1}=1+x+x^{2}$ where x generates the normal subgroup of order 3 and $f_{2}=1-f_{1}$. It yields $\operatorname{dim} K G f_{1}=24$, hence $\operatorname{dim} K G f_{2}=48$. The block $K G f_{2}$ contains exactly three simple modules, all of dimension 2. Lemma 3 implies that $\operatorname{soc}\left(C f_{2}\right)=\operatorname{soc}\left(K G f_{2}\right)$. We compute now the spaces $U=U_{1}+\operatorname{soc}\left(K G f_{2}\right)$ for all $U_{1} \in \mathcal{L}_{1}$. (Here we take only a particular subspace of $K G f_{2}$ in Step 1 which is contained in $C f_{2} \leq C$.) All such modules have minimum distance strictly smaller than 16 . Thus a group of type (β) cannot be the automorphism group of C.

In the last case $G=\left(C_{3} \times \mathrm{A}_{4}\right)\langle t\rangle$ where the involution t acts non-trivially on C_{3} and $\mathrm{A}_{4}\langle t\rangle \cong \mathrm{S}_{4}$. We again put $f_{1}=1+x+x^{2}$ where x generates the normal subgroup of order 3 and $f_{2}=1-f_{1}$. As in case (β), $\operatorname{dim} K G f_{1}=24$ and $\operatorname{dim} K G f_{2}=48$. The block $K G f_{1}$ contains 7607 submodules. Exactly 48 of them are good. The component $K G f_{2}$ has 9576333 submodules. Exactly 5184 are good. All modules in \mathcal{L} have minimum distance strictly smaller than 16 . Thus we have eliminated G and this completes the proof for $|G|=72$.

4 Excluding $|G|=56$

Throughout this section we assume that $|G|=56$. Let T denote a Sylow 7 -subgroup of G.

Lemma $5 G$ contains a normal subgroup H of order 8 isomorphic to $C_{2} \times C_{2} \times C_{2}$ on which an element of order 7 acts faithfully. Moreover, the action of G on the 72 coordinate positions has three orbits of lengths 56, 8, 8 .

Proof. Observe that [6, Lemma 2 b)] implies $\left|N_{G}(T)\right|=7$ or 14 . Since the index $\left|G: N_{G}(T)\right| \equiv 1 \bmod 7$ we get $\left|N_{G}(T)\right|=7$. Thus G has exactly 8 Sylow 7 subgroups and contains $6 \cdot 8=48$ elements of order 7 . Hence the Sylow 2-subgroup of G is normal. Since a 7 -element does not centralize an involution, G has exactly 7 involutions. This implies that the Sylow 2-subgroup is elementary abelian. By [4], an involution has no fixed points, and by [8], an element of order 7 has exactly two fixed points. Thus the Cauchy-Frobenius Lemma [15] implies that the action of G on the coordinate positions has

$$
\frac{1}{56}(56+8 \cdot 6 \cdot 2)=3
$$

orbits, say of lengths m_{1}, m_{2}, m_{3}. Since $m_{i} \mid 56$ and $m_{1}+m_{2}+m_{3}=72$, we find the unique solution $m_{1}=56, m_{2}=m_{3}=8$ (up to renumbering).

Just one of the 13 groups of order 56, namely $56 \# 11$ in the notation of the SmallGroups library, satisfies Lemma 5.

Lemma 6 Let G be $56 \# 11$ having group algebra $K G$.
a) $V=K^{72}=K G \oplus P_{1} \oplus P_{2}$ where $P_{1} \cong P_{2} \cong K_{T}^{G}$ is the projective cover of the trivial $K G$-module. The elements of $K G$ have non-zero entries only in the first 56 positions, the elements of P_{1} in position 57 up to 64 and P_{2} in the last 8 positions.
b) $C \cap\left(P_{1} \oplus P_{2}\right)=\{0, v\}$ where v has entry 1 exactly in the last 16 coordinates.
c) If $C_{0}=K G \cap C \leq K G$ then C_{0} contains the all one-vector of $K G$ and $\operatorname{dim} C_{0}=21$.

Proof. a) This follows immediately by Lemma 5 .
b) Note that $P_{1} \oplus P_{2}$ has non-zero entries at most in the last 16 coordinates. Thus, if

$$
C \cap\left(P_{1} \oplus P_{2}\right) \neq 0
$$

then the intersection contains v as the only non-zero vector, since the minimum weight of C is 16 . Suppose that

$$
C \cap\left(P_{1} \oplus P_{2}\right)=0 .
$$

In this case the projective module $P_{1} \oplus P_{2}$ is (up to isomorphism) a submodule of the factor module

$$
K^{72} / C=K^{72} / C^{\perp} \cong C^{*},
$$

hence a direct summand since $P_{1} \oplus P_{2}$ is injective. It follows that

$$
\left(P_{1} \oplus P_{2}\right)^{*} \cong P_{1}^{*} \oplus P_{2}^{*} \cong P_{1} \oplus P_{2}
$$

is a direct summand of $C^{* *} \cong C$. Therefore the projective cover of the trivial module has multiplicity at least 4 as a direct summand in K^{72}. This contradicts the fact that V contains the projective cover of the trivial module exactly three times since $K G$ contains it only once.
c) Since C contains both the all one-vector of length 72 and v, it contains their sum which has a 1 as entry exactly in the first 56 coordinates. By repeated shortening of C (16 times), we see that $\operatorname{dim} C_{0}=21$ since $\operatorname{dim} C=36$.
Lemma 7 Let G be $56 \# 11$. Its group algebra $K G$ has the following properties.
a) There are (up to isomorphism) exactly three simple modules: the trivial module 1_{G} and two modules V resp. V^{*} with $V \not \approx V^{*}$ both of dimension 3.
b) The projective cover $P\left(1_{G}\right)$ of the trivial module is generated by the (non central) idempotent $e=\sum_{x \in T} x$.
c) $P\left(1_{G}\right)$ is uniserial with composition factors $1_{G}, V, V^{*}, 1_{G}$.
d) The Loewy lengths of the projective covers $P(V)$ and $P\left(V^{*}\right)$ of V resp. V^{*} are 4 for both.
e) $C_{0} \leq \operatorname{soc}_{3}(K G)$.

Proof. a) Over a large field of characteristic 2, the group G has exactly 7 simple modules since the normal Sylow 2-subgroup H is in the kernel of any simple module. Over the binary field K we have only three simple modules $1_{G}, V$ and V^{*}.
b) This is clear since $P\left(1_{G}\right)$ is the trivial module of a 2 -complement of G induced to G.
c) $P\left(1_{G}\right)$ considered as an H-module is the regular module $K H$. Since T acts on $K H$ by conjugation and $P\left(1_{G}\right) \cong P\left(1_{G}\right)^{*}$ the assertion follows immediately.
d) This is a consequence of the fact that $P(V) \cong P\left(1_{G}\right) \otimes V$ resp. $P\left(V^{*}\right) \cong$ $P\left(1_{G}\right) \otimes V^{*}$.
e) Note that $K G=P\left(1_{G}\right) \oplus P(V) \oplus P\left(V^{*}\right)$. Since the weights of the code words in C_{0} are divisible by 2 the subcode C_{0} is contained in the augmentation ideal of $K G$. Thus, if $C_{0} \nsubseteq \operatorname{soc}_{3}(K G)$ then C_{0} contains a direct summand isomorphic to $P(V)$ or $P\left(V^{*}\right)$. This contradicts the fact that $\operatorname{dim} C_{0}=21$ and $\operatorname{dim} P(V)=\operatorname{dim} P\left(V^{*}\right)=$ 24.

To exclude G as an automorphism group of C we proceed as follows. In $\operatorname{soc}_{3}(K G)$, we compute all self-orthogonal submodules of dimension 21 . The 1394667 such modules all have minimum distance strictly less than 16 .

Hence a group of order 56 is not an automorphism group of a binary self-dual doubly-even $[72,36,16]$ code.

5 Excluding $|G|=36$

Throughout this section we assume that $|G|=36$. Since neither involutions nor elements of order 3 have fixed points (see [4] and [5]), the action of G on the 72 coordinate positions is fixed-point-freely. Thus the ambient space K^{72} is an orthogonal sum of two copies of the regular module $K G$:

$$
V=K^{72}=K G \perp K G
$$

$\#$	Group	Dimensions of simple modules	$\operatorname{dim} V f_{i}$	$\operatorname{dimsoc}_{k}\left(V f_{t}\right)$
1	$D_{18} \times C_{2}$	$1,2,6$	$8,16,48$	24,48
2	$C_{9} \times C_{4}$	$1,2,6$	$8,16,48$	$12,24,36,48$
3		$1,2,6$	24,48	$12,36,48$
4	$C_{9} \cdot C_{4}$	$1,2,6$	$8,16,48$	24,48
5	$C_{9} \times C_{2} \times C_{2}$	$1,2,6$	$8,16,48$	$12,36,48$
11	$\mathrm{~A}_{4} \times C_{3}$	$1,2,2,2,2$	24,48	$12,36,48$

Table 1: Data for certain groups of order 36
where the first $K G$ has non-zero entries in the first 36 positions and the second in the last 36 .

There are (up to isomorphism) 14 groups of order 36 . One easily checks with Magma that for all of these groups the simple modules over K are self-dual. Thus the blocks of $K G$ are self-dual and consequently we may write

$$
1=f_{1}+\ldots+f_{t}
$$

with block idempotents $f_{i}=\hat{f}_{i} \in K G$. If G is 2-nilpotent then each block contains (up to isomorphism) exactly one simple module (see [11, Chap. VII, Theorem 14.9]). This is true for all but two groups: $36 \# 3$ and $36 \# 11$.

We now proceed as follows. Let \mathcal{L}_{i} be a listing of good codes in $V f_{i}$ for $i=$ $1, \ldots, t$, and let \mathcal{L} consist of all codes $U=U_{1}+\ldots+U_{t}$ with $U_{i} \in \mathcal{L}_{i}$.
Case 1. For each group $36 \# i$ with $6 \leq i \leq 10$ and $12 \leq i \leq 14$, we compute

$$
U=U_{1}+\ldots+U_{t}
$$

where U_{j} runs over all codes in \mathcal{L}_{j} for $j=1, \ldots, t$. None of the codes U is doubly-even and of minimum distance at least 16. Hence none of these groups is an automorphism group. (Of course, we can terminate our investigation for a particular group if the set of modules $U_{1}+\ldots+U_{s}$, where $s<t$ and the U_{j} are running through all modules in $\mathcal{L}_{i_{j}}$ with $i_{j} \neq i_{k}$ for $j \neq k$, does not contain a doubly-even code of minimum distance at least 16.)

Thus it remains to consider $36 \# i$ for $i=1,2,3,4,5,11$. In Table 1, for each we list $\operatorname{dim} V f_{i}$ for $i=1, \ldots, t$ and the dimensions of the socle series of $V f_{t}$, the component of dimension 48 . Where the group has a name indicating its structure, we use this.

Lemma 8 Let $f=\hat{f}$ be a central idempotent of $K G$ and suppose that $K G f$ contains only one simple module (up to isomorphism) as composition factor. Then

$$
2 \operatorname{dim} \operatorname{soc}(C f) \geq \operatorname{dim} \operatorname{soc}(V f)
$$

Proof. Let S be the unique simple module belonging to $K G f$ and suppose that $\operatorname{soc}(K G f)$ contains S with multiplicity m. Since $V=K G \oplus K G$, the socle of $V f$ has in a direct decomposition $2 m$ direct summands (isomorphic to S). Suppose that $\operatorname{soc}(C f)$ has $m^{\prime}<m$ direct summands. Then

$$
C f \leq P_{1} \oplus \ldots \oplus P_{m^{\prime}} \leq P_{1} \oplus \ldots \oplus P_{m^{\prime}} \oplus \ldots \oplus P_{2 m}=V f
$$

where all P_{i} are isomorphic to the projective cover P of S. Note that $P \cong P^{*}$ and

$$
V f / C f=V f /(C f)^{\perp} \cong(C f)^{*} .
$$

As in Lemma 3, $(C f)^{*}$ contains more direct summands isomorphic to P than $C f$. This contradicts the Krull-Schmidt Theorem (see [9, Chap. I, Theorem 11.4]).

Case 2. To deal with the groups $36 \# i$ for $i=1,4$, we modify the computation of all good codes in the component $V_{t}:=V f_{t}$ of dimension 48. Note that the simple module in V_{t} has dimension 6 and the socle series of V_{t} has dimensions 24, 48 . Applying Lemma 8, we proceed as follows.
(i) We compute all submodules of dimension 12 in $\operatorname{soc}\left(V_{t}\right)$.
(ii) For each submodule M in (i) we compute all simple submodules in V_{t} / M and take the pullback in V_{t}. This leads to a list, say \mathcal{M}_{1}, of submodules of dimension 18 in V_{t}.
(iii) We remove from \mathcal{M}_{1} all submodules which are not good.
(iv) For all U in \mathcal{M}_{1} we compute all simple submodules of V_{t} / U and take the pullback in V_{t}. This leads to a list \mathcal{M}_{2} of submodules of dimension 24 in V_{t}.
(v) We remove from \mathcal{M}_{2} all modules which are not good and obtain \mathcal{L}_{t}.

For $36 \# 1$ the list \mathcal{M}_{1} is already empty which rules out this group. For $36 \# 4$ we obtain a non-empty list \mathcal{L}_{t} and proceed as in Case 1 to rule out this group.

Case 3. Next we consider $36 \# 3$ and $36 \# 5$. Both groups have exactly three simple modules which are of dimension 1,2 and 6 respectively. Since $36 \# 5$ is 2 -nilpotent, there are three blocks. But $36 \# 3$ is not 2 -nilpotent and has two blocks. In this case the principal block contains the trivial module and the simple module of dimension 2. Thus both groups have a block which contains the simple module, say W, of dimension 6. If f is the corresponding block idempotent then $V f=P_{1} \perp P_{2}$ with $P_{i} \cong P(W)$, which has socle series

```
            W
                W W.
            W
```

We rule out both groups using the algorithm described in Case 1. To construct the list \mathcal{L} of good codes in $V f$, we distinguish two cases:
(α) good codes which contain $\operatorname{soc}(V f)$;
(β) good codes which have a simple socle.
To find the good codes in (α) we apply the following result.
Lemma 9 Let $C f$ be a good code in $V f$ with $\operatorname{soc}(V f) \leq C f$. Then $C f \leq \operatorname{soc}_{2}(V f)$.
Proof. If $\operatorname{soc}(V f) \leq C f$ then $(w, 0) \in C f \leq V f=P_{1} \perp P_{2}$ for all $w \in \operatorname{soc}\left(P_{1}\right)$. Note that $(C f)^{\perp} \cap V f=C f$ since $C f$ is good. Let $(x, y) \in C f$. Thus

$$
0=((w, 0),(x, y))=(w, x)
$$

for all $w \in \operatorname{soc}\left(P_{1}\right)$. Since the restriction of (\cdot, \cdot) to P_{1} is non-degenerate, x must be an element of $\operatorname{soc}_{2}\left(P_{1}\right)$ since it is the only maximal submodule in P_{1}. By a symmetry argument, we see that $y \in \operatorname{soc}_{2}\left(P_{2}\right)$. Thus $(x, y) \in \operatorname{soc}_{2}\left(P_{1}\right) \perp \operatorname{soc}_{2}\left(P_{2}\right)=$ $\operatorname{soc}_{2}(V f)$.

To construct the list of good codes in (α) we search, according to Lemma 9, for all submodules in $\operatorname{soc}_{2}(V f)$ of dimension 12 and take their pullbacks in $V f$. The resulting list \mathcal{L}_{α} contains only those pullbacks which are good. We combine the modules from \mathcal{L}_{α} with the good modules from the other blocks, and establish that all resulting codes have minimum distance strictly smaller than 16.

Lemma 10 A good code in (β) is a projective indecomposable module.
Proof. Let $C f$ be a code in the list (β). Since the socle of $C f$ is simple, $C f$ is a submodule of the projective cover P of $\operatorname{soc}(C f)$. Since $\operatorname{dim} C f=24=\operatorname{dim} P$, we deduce that $C f=P$.

To obtain the list of good codes in (β) we proceed as follows. First we search for all submodules of $V f / \operatorname{soc}(V f)$ of dimension 18 by taking maximal submodules of maximal submodules. By Lemma 10, we only consider those which have a 12 dimensional socle. In the next step we take the pullbacks in $V f$ of the remaining codes, which have dimension 30 , and construct all their maximal submodules. Finally we test self-orthogonality and minimum distance at least 16. For both $36 \# 3$ and $36 \# 5$, the resulting list is empty.

Case 4. The remaining group G is $36 \# 11$ and is isomorphic to $\mathrm{A}_{4} \times C_{3}$. There are 5 simple modules $1_{G}, W_{1}, W_{2}, W_{3}, W_{4}$ of dimension $1,2,2,2,2$ and two blocks. The principal block contains 1_{G} and say W_{1}. Furthermore,

$$
K G=\left(P_{0} \oplus P_{1}\right) \perp\left(P_{2} \oplus P_{3} \oplus P_{4}\right)=K G f_{1} \perp K G f_{2}
$$

with block idempotents $f_{1}=1+y+y^{2}$ where $C_{3}=\langle y\rangle$ and $f_{2}=y+y^{2}$. Note that f_{1} defines the principal block. The structures of the blocks are as follows:

$W_{2} \quad W_{3} \quad W_{4}$

$$
K G f_{2}=W_{3}{ }_{W_{2}} \begin{array}{llllllllll}
& W_{4} & \oplus & W_{2} & & W_{4} & & & & W_{4}
\end{array}
$$

It is easy to determine that \mathcal{L}_{1} contains exactly 192 good codes in $V f_{1}$. However we are unable to determine the good codes in $V f_{2}$ and hence we are not able to eliminate this case.

Acknowledgement: O'Brien was partially supported by the Marsden Fund of New Zealand via grant UOA721. Willems thanks the Department of Mathematics of the University at Auckland for its hospitality and the excellent working conditions while this work was completed. He is also grateful to the Alexander von Humboldt Stiftung for its generous support.

References

[1] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system I: The user language. J. Symbolic Comput. 24, 235-265, 1997.
[2] Hans Ulrich Besche, Bettina Eick, and E.A. O'Brien. A millennium project: constructing small groups, Internat. J. Algebra Comput., 12, 623-644, 2002.
[3] A. Betten, H. Fripertinger, A. Kerber, A. Wassermann, and K.H. Zimmermann. Codierungstheorie - Konstruktion und Anwendung linearer Codes. SpringerVerlag, Berlin-Heidelberg-New York, 1998.
[4] S. Bouyuklieva. On the automorphisms of order 2 with fixed points for the extremal self-dual codes of length 24 m . Des. Codes Cryptogr. 25, 5-13, 2002.
[5] S. Bouyuklieva. On the automorphism group of a doubly-even $(72,36,16)$ code. IEEE Trans. Inform. Theory 50, 544-547, 2004.
[6] S. Bouyuklieva, E.A. O’Brien and W. Willems. The automorphism group of a binary self-dual doubly-even $[72,36,16]$ code is solvable. IEEE Trans. Inform. Theory 52, 4244-4248, 2006.
[7] J.H. Conway and V. Pless. On primes dividing the group order of a doublyeven $(72,36,16)$ code and the group order of a quaternary $(24,12,10)$ code. Discrete Math. 38, 143-156, 1982.
[8] R. Dontcheva, A.J. van Zanten and S. Dodunekov. Binary self-dualcodes with automorphism of composite order. IEEE Trans. Inform. Theory $\mathbf{5 0}$, 311-318, 2004.
[9] W. Feit. The representation theory of finite groups. North-Holland, Amsterdam/New York/Oxford 1982.
[10] W.C. Huffman and V. Yorgov. A [72,36,16] doubly-even code does not have an automorphism of order 11. IEEE Trans. Inform. Theory 33, 749-752, 1987.
[11] B. Huppert and N. Blackburn. Finite groups II. Springer-Verlag, Berlin/Heidelberg/New York 1982.
[12] C. Martínez-Pérez and W. Willems. Self-dual codes and modules of finite groups in characteristic two. IEEE Trans. Inform. Theory 50(8), 1798-1803, 2004.
[13] V. Pless. 23 does not divide the order of the group of a $(72,36,16)$ doubly-even code. IEEE Trans. Inform. Theory 28, 113-117, 1982.
[14] V. Pless and J.G. Thompson. 17 does not divide the order of the group of a (72,36,16) doubly-even code. IEEE Trans. Inform. Theory 28, 537-541, 1982.
[15] J. Rotman. An Introduction to the Theory of Groups. Springer-Verlag, 1994.
[16] N.J.A. Sloane. Is there a $(72,36), d=16$ self-dual code? IEEE Trans. Inform. Theory 19, 251, 1973.
[17] N.J.A. Sloane and J.G. Thompson. Cyclic self-dual codes. IEEE Trans. Inform. Theory 29, 364-366 (1983).
[18] W. Willems. A note on self-dual group codes. IEEE Trans. Inform. Theory 48, 3107-3109, 2002.
[19] V. Yorgov. On the automorphism group of a putative code. IEEE Trans. Inform. Theory 52, 1724-1726 (2006).

Addresses:

E.A. O'Brien
Department of Mathematics
University of Auckland
Private Bag 92019
New Zealand
e-mail: obrien@math.auckland.ac.nz
Wolfgang Willems
Institut für Algebra und Geometrie
Otto-von-Guericke-Universität
Magdeburg
Germany
e-mail: willems@ovgu.de

