Divisibility of weights for ideals in group algebras

Javier de la Cruz

Universidad del Norte, Barranquilla, Colombia

and

Wolfgang Willems Otto-von-Guericke Universität, Magdeburg, Germany and Universidad del Norte, Barranquilla, Colombia

Dedicated to Pham Huu Tiep on the occasion of his 60th birthday.

Keywords. Group code, weight, divisor, monomial kernel **MSC classification.** 94B05, 20C05

Abstract

In this short note we clarify some questions on the greatest common divisor of all weights of a group code. In particular we discuss Ward's condition (E) in [10], and extend a result of Damgård and Landrock on the principal block to self-dual blocks. Furthermore, we give an upper bound for the dimension of a group code in terms of its monomial kernel.

1 Introduction

Throughout this paper let $\mathbb{F} = \mathbb{F}_q$ be a finite field of size q and characteristic p, and let G be a finite group. By a group code C, we always mean a right ideal in a group algebra $\mathbb{F}G$ and denote this property by $C \leq \mathbb{F}G$. To look only at right ideals is just for convention. Everything holds equally true for left ideals. If we want to specify the group G and the field \mathbb{F} , we also say that C is a G-code over \mathbb{F} . For $a = \sum_{g \in G} a_g g \in \mathbb{F}G$ ($a_g \in \mathbb{F}$ are called the coordinates of a), the weight wt(a) of a is defined by

$$\operatorname{wt}(a) = |\{g \in G \mid a_g \neq 0\}|.$$

Note that $C \neq 0$ has no 0 coordinate, i.e., for each $g \in G$, there exists $c \in C$ with $c_g \neq 0$. We endow $\mathbb{F}G$ with the symmetric non-degenerate bilinear form $\langle \cdot, \cdot \rangle$ given by

$$\langle \sum_{g \in G} a_g g, \sum_{g \in G} b_g g \rangle = \sum_{g \in G} a_g b_g \text{ for } a_g, b_g \in \mathbb{F}.$$

For a right $\mathbb{F}G$ -module C, the dual space $C^* = \operatorname{Hom}_{\mathbb{F}}(C, \mathbb{F})$ carries the structure of a right $\mathbb{F}G$ -module via

$$c(\alpha g) = (cg^{-1})\alpha,$$

where $c \in C, g \in G$ and $\alpha \in C^*$. We call C^* the *dual module* of C. Note that $\mathbb{F}G/C^{\perp} \cong C^*$ as $\mathbb{F}G$ -modules ([13], Proposition 2.3).

Finally, let $\hat{}: \mathbb{F}G \longrightarrow \mathbb{F}G$ denote the \mathbb{F} -algebra anti-automorphism of $\mathbb{F}G$ defined by $g \mapsto g^{-1}$ for $g \in G$.

Definition 1.1 [2] Let $C \leq \mathbb{F}G$ be a group code.

a) The kernel K(C) of C is defined by

$$K(C) = \{ g \in G \mid cg = c \text{ for all } c \in C \}.$$

Thus K(C) is the largest subgroup of G which acts trivially on C.

b) The monomial kernel $K_M(C)$ of C is defined by

$$K_M(C) = \{ g \in G \mid gc = a(g)c \text{ with } a(g) \in \mathbb{F} \text{ for all } c \in C \}.$$

Observe that $K_M(C)$ is defined via a left action of G on C. Also note that K(C) is a normal subgroup of G, but $K_M(C)$ is in general only a subgroup.

Recall that a linear code C is r-divisible for $r \in \mathbb{N}$ if $r \mid \operatorname{wt}(c)$ for all $c \in C$. In the following, we denote by $\Delta(C)$ the greatest common divisor of all weights of codewords in C. Usually, $\Delta(C)$ is called the *divisor* of C and has been intensively studied by H. Ward (see [9], [10], [11]). For a survey, the reader is also referred to ([14], Section 8).

If C is a G-code over \mathbb{F}_q of dimension $k \geq 1$, then the average weight equation says that

$$\sum \operatorname{wt}(c) = |G|q^{k-1},$$

where the sum runs over representatives of all 1-dimensional subspaces of C (see for instance ([12], Lemma 4.5.1)). Thus $\Delta(C)_{p'} \mid |G|$.

Example 1.2 Let *C* be the $\left[\frac{q^k-1}{q-1}, k, q^{k-1}\right]$ simplex code over $\mathbb{F} = \mathbb{F}_q$ where $k \geq 2$ and $\gcd(k, q-1) = 1$. Then *C* is a group code in $\mathbb{F}G$ with *G* cyclic of order $\frac{q^k-1}{q-1}$. Moreover, $\Delta(C) = \Delta(C)_p = q^{k-1}$, but $\Delta(C) \nmid |G| = \frac{q^k-1}{q-1}$.

The p'-part of the divisor $\Delta(C)$ of a group code C can be determined by the monomial kernel $K_M(C)$ of C as follows. Note that Theorem 1.3 generalizes Theorem 3 of [11].

Theorem 1.3 ([2], Theorem 3.2) Let char $\mathbb{F} = p$ and $0 \neq C \leq \mathbb{F}G$ be a group code. Then the following two conditions hold true.

- a) $|K_M(C)|$ divides $\Delta(C)$.
- b) $|K_M(C)|_{p'} = \Delta(C)_{p'}$.

The determination of the *p*-part $\Delta(C)_p$ of the divisor $\Delta(C)$ seems to be more subtle (see [7], [4], [10]). In order to state a crucial result of Ward on $\Delta(C)_p$ we need the following.

Condition (E) We say that a group code $C \leq \mathbb{F}G$ satisfies condition (E) if the following holds true. Whenever $f \in C^* = \operatorname{Hom}_{\mathbb{F}}(C, \mathbb{F})$, then there exists $\eta \in \operatorname{End}_{\mathbb{F}G}(C)$ such that $f(c) = \langle c\eta, 1 \rangle$ for all $c \in C$.

Theorem 1.4 ([10], Theorem 4.4) Let $C = e\mathbb{F}_p G$ where p is a prime and $e = e^2 \neq 0$. Suppose that C satisfies condition (E). Then $\Delta(C)_p = p^{r-1}$, where r is the least positive integer for which C has a nontrivial G-invariant multilinear form f of degree r(p-1), i.e., $0 \neq f \in \operatorname{Hom}_{\mathbb{F}G}(C^{\otimes r(p-1)}, \mathbb{F}_p)$ where $C^{\otimes r(p-1)} = C \otimes \cdots \otimes C$ (r(p-1)-times).

Note that $C = e \mathbb{F}_p G$ with $e = e^2$ is equivalent to Ward's condition (D) in [10].

There also exists a version of Theorem 1.4 over extension fields. For the exact statement we refer the reader to [10].

The paper is organized as follows. In section 2 we characterize all group codes which satisfy condition (E). It turns out that for group codes $C \leq \mathbb{F}G$ the condition (E) holds true if and only if C is a 2-sided ideal in $\mathbb{F}G$ (Theorem 2.2). As a consequence a projective cover P_0 of the trivial module inside $\mathbb{F}G$ satisfies (E) if and only if G is p-nilpotent (Theorem 2.4). Section 3 mainly deals with the divisor of a group code. In Theorem 3.2 we extend a result of Damgård and Landrock on the principal block to self-dual blocks provided the underlying field is the prime field. In characteristic 2 we completely determine the divisor $\Delta(P_0)$ (Theorem 3.5). In the last section we prove for group codes $C \leq \mathbb{F}G$ a counterpart of $|G| \leq d(C) \dim C$ ([1], Corollary 2.6). More precisely we show that $|G| \geq |K_M(C)| \dim C$.

2 Ward's condition (E)

In this section we characterize group codes which satisfy condition (E).

Lemma 2.1 If $C \leq \mathbb{F}G$ is a group code, then dim $\operatorname{End}_{\mathbb{F}G}(C) \leq \dim C$.

Proof: For $\eta \in \operatorname{End}_{\mathbb{F}G}(C)$, we define $f_{\eta} \in C^*$ by $f_{\eta}(c) = \langle c\eta, 1 \rangle$ for $c \in C$. Suppose that $\langle c\eta, 1 \rangle = \langle c\eta', 1 \rangle$ for some $\eta' \in \operatorname{End}_{\mathbb{F}G}(C)$ and all $c \in C$. Since

$$\langle c\eta, g^{-1} \rangle = \langle (c\eta)g, 1 \rangle = \langle (cg)\eta, 1 \rangle = \langle (cg)\eta', 1 \rangle = \langle c\eta', g^{-1} \rangle$$

for all $g \in G$, we obtain

$$\langle c\eta,a\rangle=\langle c\eta',a\rangle$$

for all $a \in \mathbb{F}G$. Thus $c\eta = c\eta'$ for all $c \in C$, which implies $\eta = \eta'$. This shows that the map $\eta \mapsto f_{\eta}$ is injective. Hence

$$\dim \operatorname{End}_{\mathbb{F}G}(C) \leq \dim C^* = \dim C.$$

Theorem 2.2 If $C \leq \mathbb{F}G$ is a group code, then the following conditions are equivalent.

- a) dim $C = \dim \operatorname{End}_{\mathbb{F}G}(C)$.
- b) C satisfies (E).
- c) C is a 2-sided ideal in $\mathbb{F}G$.

Proof: a) \implies b) In the proof of Lemma 2.1 we have seen that the map

$$\alpha : \operatorname{End}_{\mathbb{F}G}(C) \ni \eta \mapsto f_\eta \in C^*$$

defined by $f_{\eta}(c) = \langle c\eta, 1 \rangle$ is injective. Thus, by assumption in a), α is an \mathbb{F} -linear isomorphism, which says that C satisfies (E). b) \Longrightarrow c) For $g \in G$, we define $f_g \in C^*$ by

$$f_g(c) = \langle gc, 1 \rangle,$$

for $c \in C$. By the assumption in b), there exists $\eta_g \in \operatorname{End}_{\mathbb{F}G}(C)$ such that

$$\langle gc, 1 \rangle = \langle c\eta_q, 1 \rangle$$

for all $c \in C$. Again, since C is a right ideal, we get

$$\langle gc, h^{-1} \rangle = \langle gch, 1 \rangle = \langle (ch)\eta_g, 1 \rangle = \langle (c\eta_g)h, 1 \rangle = \langle c\eta_g, h^{-1} \rangle,$$

hence

$$gc = c\eta_q \in C$$

for all $g \in G$ and all $c \in C$. Thus C is a 2-sided ideal in $\mathbb{F}G$. c) \Longrightarrow a) Let $\alpha : \mathbb{F}G \longrightarrow \operatorname{End}_{\mathbb{F}G}(C)$ be defined by $\mathbb{F}G \ni a \mapsto \alpha_a$ with $c\alpha_a = ac$ for $c \in C$. Clearly, $\operatorname{Ker}(\alpha) = \operatorname{Ann}_l(C)$, where $\operatorname{Ann}_l(C)$ denotes the left annihilator of C, i.e.,

$$\operatorname{Ann}_{l}(C) = \{ a \in \mathbb{F}G \mid ac = 0 \text{ for all } c \in C \}.$$

A well-known result of MacWilliams [6] says that

$$\widehat{\operatorname{Ker}}(\alpha) = \widehat{\operatorname{Ann}}_l(C) = C^{\perp}$$

It follows that

$$\dim \mathbb{F}G/C^{\perp} = \dim \mathbb{F}G/\operatorname{Ann}_{l}(C) \leq \dim \operatorname{End}_{\mathbb{F}G}(C) \leq \dim C,$$

by Lemma 2.1. On the other hand, as mentioned in the introduction, we have

$$\dim \mathbb{F}G/C^{\perp} = \dim C^* = \dim C,$$

which proves the condition in a).

For an $\mathbb{F}G$ -module V, we denote by Soc(V) the socle of V, i.e., the largest completely reducible $\mathbb{F}G$ -submodule of V.

Proposition 2.3 Let $C \leq \mathbb{F}G$ be a group code. If C satisfies (E), then Soc(C) contains all composition factors of C up to isomorphism.

Proof: Let X be an irreducible $\mathbb{F}G$ -module which occurs as a composition factor of C. We choose a composition series

$$C = V_1 > \dots > V_n > 0$$

of C with $V_i/V_{i+1} \cong X$, for some i. Now let $f \in C^*$ with V_{i+1} in the kernel of f, but $0 \neq f$ on V_i . Since C satisfies (E) there exists $\eta \in \operatorname{End}_{\mathbb{F}G}(C)$ such that

$$f(c) = \langle c\eta, 1 \rangle,$$

for all $c \in C$. It follows that V_{i+1} is in the kernel of η , but V_i is not. This means that η maps C on a submodule of C whose socle contains X.

In the rest of this note let $P_0 \leq \mathbb{F}G$ be the projective cover of the principal indecomposable module with trivial head. Note that P_0 is unique only up to isomorphism. But every projective cover P_0 contains the trivial ideal $\mathbb{F}(\sum_{a \in G} g)$.

Theorem 2.4 If P_0 is the projective cover of the trivial module in $\mathbb{F}G$, then the following are equivalent.

- a) P_0 satisfies condition (E).
- b) G is p-nilpotent.

Proof: $a) \Longrightarrow b$ By Theorem 2.2, the module P_0 is the principal *p*-block. Hence this block contains only one irreducible module. Thus, by ([5], Chap. VII, Theorem 14.9), the group *G* must be *p*-nilpotent.

 $b) \Longrightarrow a)$ We put $H = O_{p'}(G)$ and $e = \frac{1}{|H|} \sum_{h \in H} h$. Note that $e = e^2$ and e lies in the center of $\mathbb{F}G$. Furthermore $\mathbb{F}G = e\mathbb{F}G \oplus (1-e)\mathbb{F}G$ and $P_0 \cong P = e\mathbb{F}G \cong \mathbb{F}(G/H)$ is the principal *p*-block of $\mathbb{F}G$, since G = HT with T a Sylow *p*-subgroup of G. Thus P is an algebra and it follows that dim $P = \dim \operatorname{End}_{\mathbb{F}G}(P)$. By Theorem 2.2, we get the assertion in a).

Example 2.5 Let $G = A_4$ and let $\mathbb{F} = \mathbb{F}_3$. Then G is 3-nilpotent and by Theorem 2.4, the projective cover of the trivial module satisfies (E). Furthermore $\mathbb{F}G$ contains an absolutely irreducible projective submodule V of dimension 3, which is a direct summand of $\mathbb{F}G$. Since dim $\operatorname{End}_{\mathbb{F}G}(V) = 1$, we see that V does not satisfy (E).

3 Divisibility of projective group codes

Recall that the characteristic of \mathbb{F} is always p.

Theorem 3.1 [2] If B_0 denotes the principal p-block of $\mathbb{F}G$, then $\Delta(B_0) = |O_{p'}(G)|$.

Note that $O_{p'}(G) = K_M(B_0)$: This can be seen as follows. By a result of Brauer [5, Chap. VII, Theorem 14.8], we have $K(B_0) = O_{p'}(G)$. Thus $K_M(B_0)$ is a p'-group, since $K(B_0) \leq K_M(B_0)$ and obviously $p \nmid |K_M(B_0)/K(B_0)|$. The claim now follows by the fact that $K_M(B_0)$ is a normal subgroup of G as B_0 is a 2-sided ideal.

We can extend this result to self-dual blocks over prime fields. Note that B_0 is always self-dual, since the trivial module is obviously self-dual.

Theorem 3.2 Let B be a self-dual block over the prime field $\mathbb{F} = \mathbb{F}_p$. Then $\Delta(B) = |K_M(B)| = |K_M(B)|_{p'}$, except p = 2 and $B \neq B_0$ for which we have $\Delta(B) = 2|K_M(B)|$.

Proof: First note that $|K_M(B)|$ is a p'-group since $|K_M(B)/K(B)|$ is prime to p and K(B) is a p'-group by ([5], Chap. VII, Theorem 14.7). First we assume that p is odd, hence p-1 is even. Since $B = B^*$ we get $\operatorname{Hom}_{\mathbb{F}G}(B \otimes B, \mathbb{F}) \cong \operatorname{Hom}_{\mathbb{F}G}(B, B^*) \neq 0$. Thus $B \otimes B$ carries a nonzero G-invariant bilinear form. Consequently, since p-1 is even, $B^{\otimes (p-1)}$ has a nonzero G-invariant multilinear form. Observe that B satisfies condition (D) since a block is generated by an idempotent, and condition (E) by Theorem 2.2. Thus by ([10], Theorem 4.4), we get $\Delta(B)_p = 1$ and we are done. Now let p = 2. If $B = B_0$, then we are also done by Theorem 3.1, since B_0 contains P_0 . If $B \neq B_0$, then $\Delta(B)_2 = 2$ as $\operatorname{Hom}_{\mathbb{F}G}(B,\mathbb{F}) = 0$. We conclude the proof by applying Theorem 1.3.

Note that Theorem 3.2 implies Theorem 3.1 since field extensions take the principal block over a small field to the principal block over field extensions.

Lemma 3.3 We have $P_0 = e\mathbb{F}G$ for some $e = e^2 = \hat{e}$.

Proof: Since P_0 is a projective $\mathbb{F}G$ -module, we have $P_0 = e\mathbb{F}G$ with $e = e^2$. Suppose that $P_0 \cap P_0^{\perp} \neq 0$. Since this is a right ideal we obtain $\sum_{g \in G} g \in P_0 \cap P_0^{\perp}$. It follows that $e \sum_{g \in G} g = 0$. Since 1 = e + (1 - e), we get $\sum_{g \in G} g = (1 - e) \sum_{g \in G} g \in (1 - e)\mathbb{F}G$. That means that $\mathbb{F}G$ has at least two different irreducible submodules isomorphic to the trivial module, a contradiction. Hence P_0 is an LCD group code, which implies $e = \hat{e}$, by ([3], Theorem 3.1).

Proposition 3.4 We have $K_M(P_0) = O_{p'}(G)$. In particular, $\Delta(P_0)_{p'} = |O_{p'}(G)|$.

Proof: By ([5], Chap. VII, Theorem 14.6 and 14.7), $O_{p'}(G)$ is the largest subgroup of G which acts trivially from the right on P_0 . According to Lemma 3.3, we have $P_0 = e \mathbb{F}G$ for some $e = e^2 = \hat{e}$. We put

$$K_I(P_0) := \{g \in G \mid gx = x \text{ for all } x \in P_0 = e\mathbb{F}G\} = \{g \in G \mid xg = x \text{ for all } x \in \mathbb{F}Ge = P_0\}.$$

But $\mathbb{F}Ge$ is the projective cover of the trivial left $\mathbb{F}G$ -module. Thus, again by ([5], Chap. VII, Theorem 14.6 and 14.7), $K_I(P_0) = \mathcal{O}_{p'}(G)$.

Now let $g \in K_M(P_0)$. Then

$$gx = a(g)x$$

for all $x \in P_0$, where $a(g) \in \mathbb{F}^*$. If we take $v = \sum_{h \in G} h \in P_0$, then

$$v = gv = a(g)v.$$

Thus a(g) = 1, which shows that $K_M(P_0) = K_I(P_0)$. It follows that $K_M(P_0) = O_{p'}(G)$. Finally, by Theorem 1.3, we obtain $\Delta(P_0)_{p'} = |O_{p'}(G)|$.

In characteristic 2 we are able to determine the divisor of P_0 .

Theorem 3.5 For p = 2, we have $\Delta(P_0)_2 = 1$. In particular, $\Delta(P_0) = |O_{2'}(G)|$.

Proof: Recall that $P_0 = e \mathbb{F} G$ with $e^2 = e = \hat{e}$, according to Lemma 3.3. Clearly,

$$\langle e, e \rangle = \langle e\hat{e}, 1 \rangle = \langle e, 1 \rangle.$$

By ([3], Proposition 3.6), we have $\langle e, 1 \rangle = 1_{\mathbb{F}}$. Suppose for a moment that $\mathbb{F} = \mathbb{F}_2$ is the prime field. Thus wt(e) is odd since

$$\operatorname{wt}(e)1_{\mathbb{F}} = \langle e, e \rangle.$$

This implies $\Delta(P_0)_2 = 1$ for any projective cover of the trivial module over the binary field \mathbb{F}_2 .

Now let P_0 be the projective cover of the trivial module over \mathbb{F} , where \mathbb{F} is a finite extension field of \mathbb{F}_2 . Clearly, $P_0|_{\mathbb{F}_2G}$, which is P_0 considered as an \mathbb{F}_2G -module, is projective and contains the module $T = (\sum_{g \in G} g)\mathbb{F}_2$. Thus $P_0|_{\mathbb{F}_2G}$ contains a projective cover, say P'_0 , of T over \mathbb{F}_2 . Hence, by the above, we get

$$\Delta(P_0)_2 \mid \Delta(P'_0)_2 = 1.$$

Applying Proposition 3.4, we obtain $\Delta(P_0) = |O_{2'}(G)|$, where P_0 is the projective cover of the trivial module over any finite field of characteristic 2.

Note that $2 \mid \Delta(P)$ if $P_0 \neq P \leq \mathbb{F}_2 G$ where P is projective indecomposable. This follows immediately from the fact that P is contained in the kernel of the augmentation epimorphism which is equal to the even weight subspace of $\mathbb{F}_2 G$.

Question 3.6 What can we say about $\Delta(P_0)_p$ for p odd? Note that in general P_0 does not satisfy (E). Even for p-solvable groups we do not know that for any P_0 we always have $\Delta(P_0)_p = 1$.

Recall that, according to Massey [8], a linear code C in \mathbb{F}^n is called an LCD code (linear complementary dual) if $C \oplus C^{\perp} = \mathbb{F}^n$.

Proposition 3.7 Let $\mathbb{F} = \mathbb{F}_2$ or $\mathbb{F} = \mathbb{F}_3$, hence p = 2 or p = 3. Let $C \leq \mathbb{F}G$ be an LCD group code. If $p \mid \Delta(C)$, then $p \nmid \Delta(C^{\perp})$.

Proof: Note that $C = e \mathbb{F}G$ with $e^2 = e = \hat{e}$ and $C^{\perp} = (1 - e)\mathbb{F}G$, by ([3], Theorem 3.1). Furthermore, we have

$$\operatorname{wt}(e)1_{\mathbb{F}} = \langle e, e \rangle = \langle e\hat{e}, 1 \rangle = \langle e, 1 \rangle.$$

Thus if $p \mid \Delta(C)$, then $p \mid \text{wt}(e)$, hence $\langle e, 1 \rangle = 0$. It follows that $1 \in \text{supp}(1-e)$. Consequently $\text{wt}(1-e)1_{\mathbb{F}} \neq 0$, which shows that $p \nmid \text{wt}(1-e)$. In particular $p \nmid \Delta(C^{\perp})$. \Box

4 An upper bound for dim C in terms of $|K_M(C)|$

Let $0 \neq C \leq \mathbb{F}G$ be a group code with minimum distance d(C). In [1] we proved

$$|G| \le \operatorname{d}(C) \dim C,$$

by using an uncertainty principle. This may be seen as a lower bound for dim C in terms of d(C). Suppose that we have equality. By ([1], Theorem 2.10), this holds true exactly if and only if there exists $H \leq G$ such $C = c\mathbb{F}G$ with $c \in \mathbb{F}H$ and dim $c\mathbb{F}H = 1$. Furthermore, d(C) = |H| = wt(c). At the end of the proof of Theorem 2.10 it is shown that in the case $|G| = d(C) \dim C$ we have

$$C = \bigoplus_{i=1}^{\dim C} (c\mathbb{F}H)g_i.$$

Thus $d(C) = \Delta(C)$. Next we claim that $C_0 = c\mathbb{F}H$ is also a left ideal in $\mathbb{F}H$. Suppose that for $g \in H$ we have $gC_0 \neq C_0$. It follows that

$$\mathbb{F}H = P(C_0) \oplus P(gC_0) \oplus \dots$$

where P(X) denotes the projective cover of $X \leq \mathbb{F}H$ as a right module. Clearly $P(C_0) \cong P(gC_0)$ since $C_0 \cong gC_0$ are isomorphic as right $\mathbb{F}H$ -modules. On the other hand, the multiplicity of $P(C_0)$ in $\mathbb{F}H$ is 1 since dim $C_0 = 1$, a contradiction. This shows that C_0 is a left ideal in $\mathbb{F}H$. It follows $H \leq K_M(C)$. Now Theorem 1.3 tells us that $|K_M(C)|$ divides $\Delta(C) = |H|$. Thus $H = K_M(C)$.

Theorem 4.1 If $C \leq \mathbb{F}G$, then $|K_M(C)| \dim C \leq |G|$.

Proof: Note that $K_M(C)$ acts monomially from the left on C. Write $G = \bigcup_{i=1}^t K_M(C)g_i$ with distinct right cosets. Let C_i be the projection of C into $\mathbb{F}K_M(C)g_i$ with kernel $\bigoplus_{j\neq i} \mathbb{F}K_M(C)g_j$. If $c \in C$, then $c = (c_1, \ldots, c_t)$ with $c_i \in C_i$. Let $c_i = (c_x)_{x \in K_M(C)g_i}$. Since $g \in K_M(C)$ acts monomially from the left on C_i we get

$$c_{q^{-1}x} = \alpha(g)c_x$$

for $g \in K_M(C)$. In particular, either $c_i = 0$ or $wt(c_i) = |K_M(C)|$. Next we claim that $\dim C_i \leq 1$. Suppose that $c_i \neq 0 \neq c'_i \in C_i$. For $g \in K_M(C)$, we obtain

$$c_{g^{-1}g_i} = \alpha(g)c_{g_i} = \alpha(g)\mu c'_{g_i} = \mu c'_{q^{-1}g_i}$$

for some $\mu \in \mathbb{F}^*$. Thus $c_i = \mu c'_i$ which shows that dim $C_i \leq 1$. Consequently dim $C \leq t = |G: K_M(C)|$, hence $|K_M(C)| \dim C \leq |G|$.

Suppose that $|K_M(C)| \dim C = |G|$. Thus, by using the notation of the proof of Theorem 4.1, we have $t = \dim C = |G: K_M(C)|$ and $C = C_1 \oplus \cdots \oplus C_t$ with $\dim C_i = 1$ and $d(C_i) = |K_M(C)| = d(C)$. It follows that $d(C) \dim C = |G|$. Conversely, suppose that $d(C) \dim C = |G|$. If $|K_M(C)| \dim C < |G|$ we have $\dim C < |G: K_M(C)|$, hence $C_i = 0$ for some *i* by the proof of Theorem 4.1. This contradicts $C \neq 0$ and the transitive action of *G* from the right. Thus we have shown that $|K_M(C)| \dim C = |G|$ if and only if $d(C) \dim C = |G|$.

Remark 4.2 Let $0 \neq C \leq \mathbb{F}G$ and let $K = K_M(C) \neq 1$. If $d(C) < |G| \left(\frac{|K|-1}{|K|}\right) + 1$, then the upper bound on dim C in Theorem 4.1 is stronger than the bound given by the Singleton bound

$$d(C) + \dim C - 1 \le |G|.$$

To see this we have to show that $\frac{|G|}{|K|} < |G| - d(C) + 1$. This inequality is equivalent to $\frac{|K|-1}{|K|} > \frac{d(C)-1}{|G|}$ which holds true by the assumption.

References

- M. BORELLO, W. WILLEMS AND G. ZINI, On ideals in group algebras: an uncertainty principle and the Schur product, to appear Forum Mathematicum 2023. arXiv:2202.12621.
- [2] I. DAMGÅRD AND P. LANDROCK, Ideals and codes in group algebras, Aarhus Preprint Series, (1986).
- [3] J. DE LA CRUZ AND W. WILLEMS, On group codes with complementary duals, Des. Codes and Cryptogr. 86 (2018), 2065-2073.
- [4] P. DELSARTE AND R. J. MCELIECE, Zeros of functions in finite abelian group algebras, Amer. J. Math. 98 (1976), 197-224.
- [5] B. HUPPERT AND N. BLACKBURN, Finite Groups II, Springer, Berlin 1982.
- [6] F.J. MACWILLIAMS, Codes and ideals in group algebras, Combinatorial Mathematics and Appl., Proceedings, Eds. R. C. Bose and T. A. Dowing, 317-328 (1967).
- [7] R.J. MCELIES, Weight congruences of p-ary cyclic codes, Discrete Math. 3 (1972), 1972.
- [8] J.L. MASSEY, Linear codes with complementary duals, *Discrete Math.* 106/107 (1992), 337-342.
- [9] H. WARD, Divisible codes, Archiv der Mathematik 36 (1981), 485-494.

- [10] H. WARD, Multilinear forms and divisors of codeword weights, Quart. J. Math. Oxford 34 (1983), 115-128.
- [11] H. WARD, Divisible codes a survey, Serdicia Math. J. 27 (2001), 263-278.
- [12] W. WILLEMS, Codierungstheorie, de Gruyter, Berlin 1999.
- [13] W. WILLEMS, A note on self-dual group codes, *IEEE Trans. Inform. Theory* 48 (2007), 3107-3109.
- [14] W. WILLEMS, Codes in group algebras, Chap. 16 in Concise Encyclopidia of Coding Theory, Eds. W. C. Huffman, J.-L. Kim and P. Solé, CRC Press, Boca Raton 2021.