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Abstract

In this short note we clarify some questions on the greatest common divisor of all
weights of a group code. In particular we discuss Ward’s condition (E) in [10], and
extend a result of Damg̊ard and Landrock on the principal block to self-dual blocks.
Furthermore, we give an upper bound for the dimension of a group code in terms of
its monomial kernel.

1 Introduction

Throughout this paper let F = Fq be a finite field of size q and characteristic p, and let G
be a finite group. By a group code C, we always mean a right ideal in a group algebra FG
and denote this property by C ≤ FG. To look only at right ideals is just for convention.
Everything holds equally true for left ideals. If we want to specify the group G and the
field F, we also say that C is a G-code over F. For a =

∑
g∈G agg ∈ FG (ag ∈ F are called

the coordinates of a), the weight wt(a) of a is defined by

wt(a) = |{g ∈ G | ag ̸= 0}|.

Note that C ̸= 0 has no 0 coordinate, i.e., for each g ∈ G, there exists c ∈ C with cg ̸= 0.
We endow FG with the symmetric non-degenerate bilinear form ⟨· , ·⟩ given by

⟨
∑
g∈G

agg,
∑
g∈G

bgg⟩ =
∑
g∈G

agbg for ag, bg ∈ F.
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For a right FG-module C, the dual space C∗ = HomF(C,F) carries the structure of a
right FG-module via

c(αg) = (cg−1)α,

where c ∈ C, g ∈ G and α ∈ C∗. We call C∗ the dual module of C. Note that FG/C⊥ ∼= C∗

as FG-modules ([13], Proposition 2.3).

Finally, let ˆ : FG −→ FG denote the F-algebra anti-automorphism of FG defined by
g 7→ g−1 for g ∈ G.

Definition 1.1 [2] Let C ≤ FG be a group code.

a) The kernel K(C) of C is defined by

K(C) = {g ∈ G | cg = c for all c ∈ C}.

Thus K(C) is the largest subgroup of G which acts trivially on C.

b) The monomial kernel KM (C) of C is defined by

KM (C) = {g ∈ G | gc = a(g)c with a(g) ∈ F for all c ∈ C}.

Observe that KM (C) is defined via a left action of G on C. Also note that K(C) is a
normal subgroup of G, but KM (C) is in general only a subgroup.

Recall that a linear code C is r-divisible for r ∈ N if r | wt(c) for all c ∈ C. In the
following, we denote by ∆(C) the greatest common divisor of all weights of codewords in
C. Usually, ∆(C) is called the divisor of C and has been intensively studied by H. Ward
(see [9], [10], [11]). For a survey, the reader is also referred to ([14], Section 8).

If C is a G-code over Fq of dimension k ≥ 1, then the average weight equation says
that ∑

wt(c) = |G|qk−1,

where the sum runs over representatives of all 1-dimensional subspaces of C (see for
instance ([12], Lemma 4.5.1)). Thus ∆(C)p′ | |G|.

Example 1.2 Let C be the [ q
k−1
q−1 , k, q

k−1] simplex code over F = Fq where k ≥ 2 and

gcd(k, q − 1) = 1. Then C is a group code in FG with G cyclic of order qk−1
q−1 . Moreover,

∆(C) = ∆(C)p = qk−1, but ∆(C) ∤ |G| = qk−1
q−1 .

The p′-part of the divisor ∆(C) of a group code C can be determined by the monomial
kernel KM (C) of C as follows. Note that Theorem 1.3 generalizes Theorem 3 of [11].

Theorem 1.3 ([2], Theorem 3.2) Let char F = p and 0 ̸= C ≤ FG be a group code. Then
the following two conditions hold true.
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a) |KM (C)| divides ∆(C).

b) |KM (C)|p′ = ∆(C)p′.

The determination of the p-part ∆(C)p of the divisor ∆(C) seems to be more subtle
(see [7], [4], [10]). In order to state a crucial result of Ward on ∆(C)p we need the following.

Condition (E) We say that a group code C ≤ FG satisfies condition (E) if the following
holds true. Whenever f ∈ C∗ = HomF(C,F), then there exists η ∈ EndFG(C) such that
f(c) = ⟨cη, 1⟩ for all c ∈ C.

Theorem 1.4 ([10], Theorem 4.4) Let C = eFpG where p is a prime and e = e2 ̸= 0.
Suppose that C satisfies condition (E). Then ∆(C)p = pr−1, where r is the least positive
integer for which C has a nontrivial G-invariant multilinear form f of degree r(p − 1),
i.e., 0 ̸= f ∈ HomFG(C

⊗r(p−1),Fp) where C⊗r(p−1) = C ⊗ · · · ⊗ C (r(p− 1)−times).

Note that C = eFpG with e = e2 is equivalent to Ward’s condition (D) in [10].

There also exists a version of Theorem 1.4 over extension fields. For the exact state-
ment we refer the reader to [10].

The paper is organized as follows. In section 2 we characterize all group codes which
satisfy condition (E). It turns out that for group codes C ≤ FG the condition (E) holds true
if and only if C is a 2-sided ideal in FG (Theorem 2.2). As a consequence a projective cover
P0 of the trivial module inside FG satisfies (E) if and only if G is p-nilpotent (Theorem
2.4). Section 3 mainly deals with the divisor of a group code. In Theorem 3.2 we extend
a result of Damg̊ard and Landrock on the principal block to self-dual blocks provided the
underlying field is the prime field. In characteristic 2 we completely determine the divisor
∆(P0) (Theorem 3.5). In the last section we prove for group codes C ≤ FG a counterpart of
|G| ≤ d(C) dimC ([1], Corollary 2.6). More precisely we show that |G| ≥ |KM (C)|dimC.

2 Ward’s condition (E)

In this section we characterize group codes which satisfy condition (E).

Lemma 2.1 If C ≤ FG is a group code, then dimEndFG(C) ≤ dimC.

Proof: For η ∈ EndFG(C), we define fη ∈ C∗ by fη(c) = ⟨cη, 1⟩ for c ∈ C. Suppose that
⟨cη, 1⟩ = ⟨cη′, 1⟩ for some η′ ∈ EndFG(C) and all c ∈ C. Since

⟨cη, g−1⟩ = ⟨(cη)g, 1⟩ = ⟨(cg)η, 1⟩ = ⟨(cg)η′, 1⟩ = ⟨cη′, g−1⟩

for all g ∈ G, we obtain
⟨cη, a⟩ = ⟨cη′, a⟩
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for all a ∈ FG. Thus cη = cη′ for all c ∈ C, which implies η = η′. This shows that the
map η 7→ fη is injective. Hence

dimEndFG(C) ≤ dimC∗ = dimC.

2

Theorem 2.2 If C ≤ FG is a group code, then the following conditions are equivalent.

a) dimC = dimEndFG(C).

b) C satisfies (E).

c) C is a 2-sided ideal in FG.

Proof: a) =⇒ b) In the proof of Lemma 2.1 we have seen that the map

α : EndFG(C) ∋ η 7→ fη ∈ C∗

defined by fη(c) = ⟨cη, 1⟩ is injective. Thus, by assumption in a), α is an F-linear isomor-
phism, which says that C satisfies (E).
b) =⇒ c) For g ∈ G, we define fg ∈ C∗ by

fg(c) = ⟨gc, 1⟩,

for c ∈ C. By the assumption in b), there exists ηg ∈ EndFG(C) such that

⟨gc, 1⟩ = ⟨cηg, 1⟩,

for all c ∈ C. Again, since C is a right ideal, we get

⟨gc, h−1⟩ = ⟨gch, 1⟩ = ⟨(ch)ηg, 1⟩ = ⟨(cηg)h, 1⟩ = ⟨cηg, h−1⟩,

hence
gc = cηg ∈ C

for all g ∈ G and all c ∈ C. Thus C is a 2-sided ideal in FG.
c) =⇒ a) Let α : FG −→ EndFG(C) be defined by FG ∋ a 7→ αa with cαa = ac for c ∈ C.
Clearly, Ker(α) = Annl(C), where Annl(C) denotes the left annihilator of C, i.e.,

Annl(C) = {a ∈ FG | ac = 0 for all c ∈ C}.

A well-known result of MacWilliams [6] says that

K̂er(α) = ̂Annl(C) = C⊥.

It follows that

dimFG/C⊥ = dimFG/Annl(C) ≤ dimEndFG(C) ≤ dimC,

4



by Lemma 2.1. On the other hand, as mentioned in the introduction, we have

dimFG/C⊥ = dimC∗ = dimC,

which proves the condition in a). 2

For an FG-module V , we denote by Soc(V ) the socle of V , i.e., the largest completely
reducible FG-submodule of V .

Proposition 2.3 Let C ≤ FG be a group code. If C satisfies (E), then Soc(C) contains
all composition factors of C up to isomorphism.

Proof: Let X be an irreducible FG-module which occurs as a composition factor of C.
We choose a composition series

C = V1 > · · · > Vn > 0

of C with Vi/Vi+1
∼= X, for some i. Now let f ∈ C∗ with Vi+1 in the kernel of f , but 0 ̸= f

on Vi. Since C satisfies (E) there exists η ∈ EndFG(C) such that

f(c) = ⟨cη, 1⟩,

for all c ∈ C. It follows that Vi+1 is in the kernel of η, but Vi is not. This means that η
maps C on a submodule of C whose socle contains X. 2

In the rest of this note let P0 ≤ FG be the projective cover of the principal indecom-
posable module with trivial head. Note that P0 is unique only up to isomorphism. But
every projective cover P0 contains the trivial ideal F(

∑
g∈G g).

Theorem 2.4 If P0 is the projective cover of the trivial module in FG, then the following
are equivalent.

a) P0 satisfies condition (E).

b) G is p-nilpotent.

Proof: a) =⇒ b) By Theorem 2.2, the module P0 is the principal p-block. Hence this
block contains only one irreducible module. Thus, by ([5], Chap. VII, Theorem 14.9), the
group G must be p-nilpotent.
b) =⇒ a) We put H = Op′(G) and e = 1

|H|
∑

h∈H h. Note that e = e2 and e lies in the

center of FG. Furthermore FG = eFG ⊕ (1 − e)FG and P0
∼= P = eFG ∼= F(G/H) is the

principal p-block of FG, since G = HT with T a Sylow p-subgroup of G. Thus P is an
algebra and it follows that dimP = dimEndFG(P ). By Theorem 2.2, we get the assertion
in a). 2

Example 2.5 Let G = A4 and let F = F3. Then G is 3-nilpotent and by Theorem 2.4, the
projective cover of the trivial module satisfies (E). Furthermore FG contains an absolutely
irreducible projective submodule V of dimension 3, which is a direct summand of FG.
Since dimEndFG(V ) = 1, we see that V does not satisfy (E).
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3 Divisibility of projective group codes

Recall that the characteristic of F is always p.

Theorem 3.1 [2] If B0 denotes the principal p-block of FG, then ∆(B0) = |Op′(G)|.

Note that Op′(G) = KM (B0): This can be seen as follows. By a result of Brauer [5,
Chap. VII, Theorem 14.8], we have K(B0) = Op′(G). Thus KM (B0) is a p′-group, since
K(B0) ≤ KM (B0) and obviously p ∤ |KM (B0)/K(B0)|. The claim now follows by the fact
that KM (B0) is a normal subgroup of G as B0 is a 2-sided ideal.

We can extend this result to self-dual blocks over prime fields. Note that B0 is always
self-dual, since the trivial module is obviously self-dual.

Theorem 3.2 Let B be a self-dual block over the prime field F = Fp. Then ∆(B) =
|KM (B)| = |KM (B)|p′, except p = 2 and B ̸= B0 for which we have ∆(B) = 2|KM (B)|.

Proof: First note that |KM (B)| is a p′-group since |KM (B)/K(B)| is prime to p and
K(B) is a p′-group by ([5], Chap. VII, Theorem 14.7). First we assume that p is odd,
hence p− 1 is even. Since B = B∗ we get HomFG(B ⊗B,F) ∼= HomFG(B,B∗) ̸= 0. Thus
B ⊗ B carries a nonzero G-invariant bilinear form. Consequently, since p − 1 is even,
B⊗(p−1) has a nonzero G-invariant multilinear form. Observe that B satisfies condition
(D) since a block is generated by an idempotent, and condition (E) by Theorem 2.2. Thus
by ([10], Theorem 4.4), we get ∆(B)p = 1 and we are done. Now let p = 2. If B = B0,
then we are also done by Theorem 3.1, since B0 contains P0. If B ̸= B0, then ∆(B)2 = 2
as HomFG(B,F) = 0. We conclude the proof by applying Theorem 1.3. 2

Note that Theorem 3.2 implies Theorem 3.1 since field extensions take the principal
block over a small field to the principal block over field extensions.

Lemma 3.3 We have P0 = eFG for some e = e2 = ê.

Proof: Since P0 is a projective FG-module, we have P0 = eFG with e = e2. Suppose
that P0 ∩ P⊥

0 ̸= 0. Since this is a right ideal we obtain
∑

g∈G g ∈ P0 ∩ P⊥
0 . It follows that

e
∑

g∈G g = 0. Since 1 = e+ (1− e), we get
∑

g∈G g = (1− e)
∑

g∈G g ∈ (1− e)FG. That
means that FG has at least two different irreducible submodules isomorphic to the trivial
module, a contradiction. Hence P0 is an LCD group code, which implies e = ê, by ([3],
Theorem 3.1). 2

Proposition 3.4 We have KM (P0) = Op′(G). In particular, ∆(P0)p′ = |Op′(G)|.

Proof: By ([5], Chap. VII, Theorem 14.6 and 14.7), Op′(G) is the largest subgroup of G
which acts trivially from the right on P0. According to Lemma 3.3, we have P0 = eFG for
some e = e2 = ê. We put

KI(P0) := {g ∈ G | gx = x for all x ∈ P0 = eFG} = {g ∈ G | xg = x for all x ∈ FGe = P̂0}.
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But FGe is the projective cover of the trivial left FG-module. Thus, again by ([5], Chap.
VII, Theorem 14.6 and 14.7), KI(P0) = Op′(G).

Now let g ∈ KM (P0). Then
gx = a(g)x

for all x ∈ P0, where a(g) ∈ F∗. If we take v =
∑

h∈G h ∈ P0, then

v = gv = a(g)v.

Thus a(g) = 1, which shows that KM (P0) = KI(P0). It follows that KM (P0) = Op′(G).
Finally, by Theorem 1.3, we obtain ∆(P0)p′ = |Op′(G)|.

2

In characteristic 2 we are able to determine the divisor of P0.

Theorem 3.5 For p = 2, we have ∆(P0)2 = 1. In particular, ∆(P0) = |O2′(G)|.

Proof: Recall that P0 = eFG with e2 = e = ê , according to Lemma 3.3. Clearly,

⟨e, e⟩ = ⟨eê, 1⟩ = ⟨e, 1⟩.

By ([3], Proposition 3.6), we have ⟨e, 1⟩ = 1F. Suppose for a moment that F = F2 is the
prime field. Thus wt(e) is odd since

wt(e)1F = ⟨e, e⟩.

This implies ∆(P0)2 = 1 for any projective cover of the trivial module over the binary
field F2.

Now let P0 be the projective cover of the trivial module over F, where F is a finite
extension field of F2. Clearly, P0|F2G, which is P0 considered as an F2G-module, is projec-
tive and contains the module T = (

∑
g∈G g)F2. Thus P0|F2G contains a projective cover,

say P ′
0, of T over F2. Hence, by the above, we get

∆(P0)2 | ∆(P ′
0)2 = 1.

Applying Proposition 3.4, we obtain ∆(P0) = |O2′(G)|, where P0 is the projective cover
of the trivial module over any finite field of characteristic 2. 2

Note that 2 | ∆(P ) if P0 ̸= P ≤ F2G where P is projective indecomposable. This
follows immediately from the fact that P is contained in the kernel of the augmentation
epimorphism which is equal to the even weight subspace of F2G.

Question 3.6 What can we say about ∆(P0)p for p odd? Note that in general P0 does
not satisfy (E). Even for p-solvable groups we do not know that for any P0 we always have
∆(P0)p = 1.

Recall that, according to Massey [8], a linear code C in Fn is called an LCD code
(linear complementary dual) if C ⊕ C⊥ = Fn.
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Proposition 3.7 Let F = F2 or F = F3, hence p = 2 or p = 3. Let C ≤ FG be an LCD
group code. If p | ∆(C), then p ∤ ∆(C⊥).

Proof: Note that C = eFG with e2 = e = ê and C⊥ = (1− e)FG, by ([3], Theorem 3.1).
Furthermore, we have

wt(e)1F = ⟨e, e⟩ = ⟨eê, 1⟩ = ⟨e, 1⟩.

Thus if p | ∆(C), then p | wt(e), hence ⟨e, 1⟩ = 0. It follows that 1 ∈ supp(1− e). Conse-
quently wt(1− e)1F ̸= 0, which shows that p ∤ wt(1− e). In particular p ∤ ∆(C⊥). 2

4 An upper bound for dimC in terms of |KM(C)|
Let 0 ̸= C ≤ FG be a group code with minimum distance d(C). In [1] we proved

|G| ≤ d(C) dimC,

by using an uncertainty principle. This may be seen as a lower bound for dimC in terms of
d(C). Suppose that we have equality. By ([1], Theorem 2.10), this holds true exactly if and
only if there exists H ≤ G such C = cFG with c ∈ FH and dim cFH = 1. Furthermore,
d(C) = |H| = wt(c). At the end of the proof of Theorem 2.10 it is shown that in the case
|G| = d(C) dimC we have

C = ⊕dimC
i=1 (cFH)gi.

Thus d(C) = ∆(C). Next we claim that C0 = cFH is also a left ideal in FH. Suppose
that for g ∈ H we have gC0 ̸= C0. It follows that

FH = P (C0)⊕ P (gC0)⊕ ....

where P (X) denotes the projective cover of X ≤ FH as a right module. Clearly P (C0) ∼=
P (gC0) since C0

∼= gC0 are isomorphic as right FH-modules. On the other hand, the
multiplicity of P (C0) in FH is 1 since dimC0 = 1, a contradiction. This shows that C0

is a left ideal in FH. It follows H ≤ KM (C). Now Theorem 1.3 tells us that |KM (C)|
divides ∆(C) = |H|. Thus H = KM (C).

Theorem 4.1 If C ≤ FG, then |KM (C)| dimC ≤ |G|.

Proof: Note that KM (C) acts monomially from the left on C. Write G = ∪t
i=1KM (C)gi

with distinct right cosets. Let Ci be the projection of C into FKM (C)gi with kernel
⊕j ̸=iFKM (C)gj . If c ∈ C, then c = (c1, . . . , ct) with ci ∈ Ci. Let ci = (cx)x∈KM (C)gi .
Since g ∈ KM (C) acts monomially from the left on Ci we get

cg−1x = α(g)cx

for g ∈ KM (C). In particular, either ci = 0 or wt(ci) = |KM (C)|. Next we claim that
dimCi ≤ 1. Suppose that ci ̸= 0 ̸= c′i ∈ Ci. For g ∈ KM (C), we obtain

cg−1gi = α(g)cgi = α(g)µc′gi = µc′g−1gi
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for some µ ∈ F∗. Thus ci = µc′i which shows that dimCi ≤ 1. Consequently dimC ≤ t =
|G : KM (C)|, hence |KM (C)| dimC ≤ |G|. 2

Suppose that |KM (C)|dimC = |G|. Thus, by using the notation of the proof of
Theorem 4.1, we have t = dimC = |G : KM (C)| and C = C1 ⊕ · · · ⊕ Ct with dimCi = 1
and d(Ci) = |KM (C)| = d(C). It follows that d(C) dimC = |G|. Conversely, suppose
that d(C) dimC = |G|. If |KM (C)|dimC < |G| we have dimC < |G : KM (C)|, hence
Ci = 0 for some i by the proof of Theorem 4.1. This contradicts C ̸= 0 and the transitive
action of G from the right. Thus we have shown that |KM (C)|dimC = |G| if and only if
d(C) dimC = |G|.

Remark 4.2 Let 0 ̸= C ≤ FG and let K = KM (C) ̸= 1. If d(C) < |G|
(
|K|−1
|K|

)
+ 1,

then the upper bound on dimC in Theorem 4.1 is stronger than the bound given by the
Singleton bound

d(C) + dimC − 1 ≤ |G|.

To see this we have to show that |G|
|K| < |G| − d(C) + 1. This inequality is equivalent to

|K|−1
|K| > d(C)−1

|G| which holds true by the assumption.
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