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Abstract

In this note we answer some questions on LCD group codes posed in [4] and [5].
Furthermore, over prime fields we determine completely the p-part of the divisor of an
LCD group code. In addition we present a natural construction of almost LCD codes.

1 Introduction

Throughout this note let K always denote a finite field, i.e., K = Fq where q is a power
of a prime p. According to Massey [9], a linear code C ≤ Kn is called an LCD code if
Kn = C ⊕ C⊥. Like self-dual codes, LCD codes are of particular interest since they play
a crucial role not only in error correction but also in information protection [2].

Many of the well-known good linear codes can be described as group codes, or more
precisely as G-codes, i.e., as right ideals in a group algebra KG where G is a finite group.
For more information on group codes, the reader is referred to the survey article [12].

In this note we may look more closely on LCD group codes. A complete characteri-
zation of such codes has been given in [4]. More precisely, a group code C, denoted by
C ≤ KG, is an LCD code if and only if C = eKG with e2 = e = ê where ̂ is the K-linear
map on KG which inverts the group elements g ∈ G.

In what follows we continue our investigation on LCD group codes, in particular on
those which are also MDS codes. Note that LCD MDS codes are somehow optimal when
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used in the protection of information against side-channel or fault injection attacks [2].
Furthermore, we completely determine the p-part of the divisor of an LCD group code over
a prime field which is the greatest common divisor of all weights. Essentially, we answer
some open questions posed in [4] and [5] for LCD codes and present a method to construct
nearly LCD codes, i.e., group codes C for which C ∩ C⊥ is an irreducible KG-module.

To a large extend the methods which we use are from representation theory of finite
groups. The basics can be found in [12] or [8, Chap. VII]. Throughout the paper group
codes are always right ideals and KG-modules right KG-modules.

2 LCD MDS group codes

LCD MDS group codes seem to be rather rare. If such a code exists, then the ambient
space KG has to be semisimple in the case that G is abelian [4, Lemma 4.4]. We extend
this result to arbitrary finite groups in the case that the underlying field is F2.

In the following we call a group code C ≤ KG non-trivial if 0 ̸= C ̸= KG.

Definition 2.1 (H. Ward [10]) For a code C, the divisor ∆(C) of C is defined as the
greatest common divisor of all weights of C.

The first result answers Question 4.6 of [4] in the case of a binary field F2. Unfortu-
nately we do not know what happens if the underlying field is a proper extension of F2 or
if it is of odd characteristic.

Theorem 2.2 If C ≤ F2G is a non-trivial LCD MDS group code, then |G| is odd, i.e.,
F2G is a semisimple algebra.

Proof: Suppose that 2 | |G|. According to [4], the code C is a projective F2G-module,
hence a direct sum of indecomposable projective F2G-modules, which are uniquely deter-
mined up to isomorphism, by the Krull-Schmidt Theorem (see for instance [1, Chap. II,
Theorem 3]).

We first assume that C does not contain the projective cover of the trivial module (up
to isomorphism). By Dickson’s theorem [8, Chap. VII, Corollary 7.16], we have 2 | dimC.
Since C is an MDS code, we also have

|G| − dimC + 1 = d(C).

Thus d(C) is odd. Since the cover of the trivial module is not contained in C, we have
HomF2G(C,F2) = 0. Applying [10, Theorem 4.1 and Theorem 4.4] we get

2 | ∆(G) | d(C),

a contradiction.
Finally, suppose that the projective cover of the trivial module is contained in C. Now

we look at C⊥ which is obviously also an LCD code. Since C⊥ ̸= 0, it is also an MDS
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code. Furthermore, C⊥ does not contain the projective cover of the trivial module since
its multiplicity in the group algebra KG is equal to 1. Now we apply the same arguments
as above to C⊥ to get the final contradiction. 2

Remark 2.3 [2, Lemma 1] If K = Fq, q = 2m and 0 < k < n = q − 1, then there exist
LCD Reed-Solomon codes of length n and dimension k. Note that these codes are LCD
MDS group codes over a cyclic group.

Remark 2.4 If K is any finite field of characteristic p and p ∤ |G|, then, for any finite
group G, there exist LCD MDS group codes 0 ̸= C < KG, namely the unique trivial
submodule T = (

∑
g∈G g)K = K(

∑
g∈G g).

For a =
∑

g∈G agg we define the adjoint â of a by â =
∑

g∈G agg
−1. Note that ̂ defines

an anti-algebra automorphism of KG.

In order to prove Theorem 2.2 over a general finite field Fq we may assume that q = p
is a prime.

Lemma 2.5 Let E be an extension field of K. If there exists a non-trivial LCD MDS
group code over K, then there exists a non-trivial LCD MDS group code over E as well.

Proof: Let C ≤ KG be an LCD MDS group code. We consider C ′ = C ⊗K E ≤ EG. If
C = eKG with e = e2 = ê (see [4, Theorem 3.1]), then C ′ = eEG. Hence C ′ is an LCD
group code, by [4, Theorem 3.1]. According to [7, Proposition 12], the extension C ′ has
the same parameters as C. Thus C ′ is an MDS code and we are done. 2

Definition 2.6 For a =
∑

g∈G agg ∈ KG (ag ∈ K) we define the support of a by

supp(a) = {g ∈ G | ag ̸= 0}.

The proof of the next result is an adaption of the proof of [4, Lemma 4.4].

Proposition 2.7 Let 0 ̸= C = eKG < KG with e2 = e = ê be an LCD MDS code. Then
G = ⟨supp(e)⟩, i.e., the group G is generated by the support of e.

Proof: Let p be the characteristic of K and let H = ⟨supp(e)⟩. By [4], we have C⊥ =
(1− e)KG. Furthermore, |supp(1− e)| ≤ |supp(e)|+1. Since C⊥ is an MDS code as well,
it follows that

|G|+ 2 = d(C) + d(C⊥) ≤ 2 |supp(e)|+ 1 ≤ 2|H|+ 1,

hence |H| > |G|
2 . As H is a subgroup of G, we obtain H = G, by elementary group theory.

2
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Definition 2.8 A group code C is called self-adjoint if C = Ĉ.

Note that a self-adjoint group code is a two-sided ideal since ̂ defines an anti-algebra
automorphism of a group algebra.

Proposition 2.9 Let char K = p and let N be a normal subgroup of G of index p. Then
there does not exist a non-trivial self-adjoint LCD MDS group code C.

Proof: Let C be a non-trivial self-adjoint LCD MDS group code in KG. According to
[4, Corollary 3.3] we have C = fKG where f = f2 = f̂ and f lies in the center Z(KG)
of KG. Now, a well-known theorem of Osima [8, Chap. VII, Theorem 12.8] tells us that
supp(f) consists only of p′-elements. Thus supp(f) ⊆ N , hence ⟨supp(f)⟩ ≤ N , contra-
dicting Proposition 2.7. 2

Proposition 2.10 Let G be a p-solvable group where the characteristic p of K divides
|G|. Suppose that

Op′,p(G) = Op′(G)×Op(G).

If B is a self-adjoint p-block, i.e., a 2-sided indecomposable self-adjoint LCD code, then B
is not MDS.

Proof: Since B is a two-sided ideal, we may write B = fKG where f = f2 = f̂ is centrally
primitive and suppose that B is an MDS code. Since Op(G) is contained in every defect
group [1, Chap. IV, Theorem 6], we get by [11, Corollary] that ⟨supp(f)⟩ ≤ Op′(G). On
the other hand, by Proposition 2.7 we have G = ⟨supp(f)⟩, a contradiction to p | |G|.

2

Remark 2.11 ([4], Example 4.1) Under the condition of Proposition 2.9 there may exist
non-trivial self-adjoint LCD group codes which are almost MDS codes. Recall that a linear
[n, k, d] code is called an almost MDS code if d = n− k:
Let G = S3 be the symmetric group on 3 letters and let K be a field of characteristic 2.
If g ∈ G is of order 3, then e = g + g2 = e2 = ê is a central self-adjoint idempotent in
KG. The group code C = eKG is a self-adjoint LCD almost MDS code with parameters
[6, 4, 2]. Note that C⊥ has parameters [6, 2, 3]. Hence C⊥ is not an almost MDS code.

Proposition 2.12 Let 0 ̸= C = eKG < KG with e2 = e = ê be an LCD code. Suppose
that C and C⊥ as well are almost MDS codes. Then |G : ⟨supp(e)⟩| ≤ 2.

Proof: Let p be the characteristic of K and let H = ⟨supp(e)⟩. Since C and C⊥ are
almost MDS codes, we get, as in the proof of Proposition 2.7, that

|G| = d(C) + d(C⊥) ≤ 2 |supp(e)|+ 1 ≤ 2|H|+ 1.

Since |H| | |G| we even have |G|−1
2 < |H|. If |G| is odd, then |G|+1

2 ≤ |H|, hence G = H.

If 2 | |G|, then |G|
2 ≤ |H|. Thus H = G or H is a normal subgroup of G of index 2. 2
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Lemma 2.13 Let K be of characteristic p. If 0 ̸= C ≤ KG is an LCD MDS group code,
then d(C) ≡ 1 mod |G|p. In particular, p ∤ ∆(C).

Proof: Since C is an MDS code, we have

d(C) = |G| − dimC + 1.

The assertion follows by applying |G|p | dimC due to Dickson’s theorem [8, Chap. VII,
Corollary 7.16].

2

3 Divisors of LCD group codes

According to [3, Theorem 3.2] the p′-part of the divisor ∆(C) of a group code C can
easily be determined by a suitable subgroup of the underlying group G. However, the
computation of the p-part ∆(C)p seems to be more subtle. In this section we give an
answer for LCD group codes over the prime field Fp.

Definition 3.1 IfM is a (right)KG-module, then the dual vector spaceM∗ = HomK(M,K)
becomes a KG-module via

m(fg) = (mg−1)f

where m ∈ M,f ∈ M∗ and g ∈ G. With this action M∗ is called the dual module of M .

According to [5, Theorem 1.3] we know how to compute the p′-part of the divisor ∆(C)
of a group code C via the underlying group. The determination of the p-part turns out to
be more subtle. However, over prime fields the next two results give an answer.

Theorem 3.2 Let K = Fp where p is an odd prime. If 0 ̸= C ≤ KG is an LCD group
code, then ∆(C)p = 1, i.e., ∆(C) is not divisible by p.

Proof: Since C is an LCD group code, we may write C = eKG with e = e2 = ê. Note
that

C∗ ∼= êKG = eKG = C,

by [4, Lemma 2.3]. Thus HomKG(C⊗C,K) = HomKG(C,C
∗) ̸= 0. Since p is odd, we get

HomKG(C
(p−1),K) ̸= 0

with C(p−1) = C ⊗ · · · ⊗ C, where C has been taken (p− 1)-times in the tensor product.
Now, an application of [10, Theorem 4.4] yields p ∤ ∆(C). 2

Theorem 3.3 Let K = F2 and let P0 be the projective cover of the trivial module. If
0 ̸= C ≤ KG is an LCD group code, then

∆(C)2 =

{
1 if P0 ≤ C (up to isomorphism)
2 otherwise.
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Proof: The proof follows the same lines as for Theorem 3.2. 2

The following corollary answers Question 3.6 of [5].

Corollary 3.4 Let K be any finite field of characteristic p and let P0 denote the projective
cover of the trivial module in KG. Then ∆(P0) = |Op′(G)|.

Proof: According to [5, Lemma 3.3] and [4, Theorem 3.1], P0 is an LCD group code. If
p = 2, then the assertion has already been proved in [5]. Thus let p be odd. First we
assume that K = Fp. By Theorem 3.2, we know that ∆(P0)p =1, and by [5, Proposition
3.4] we have ∆(P0) = |Op′(G)|. Thus we are done over the prime field Fp.

Now, let K be any finite field of odd characteristic p. Let Fp be the prime field of K.
Clearly, P0|FpG, which is P0 considered as an FpG-module, is projective and contains the
module T = Fp(

∑
g∈G g). Thus P0|FpG contains a projective cover, say P ′

0, of T over Fp.
More precisely, P0 = P ′

0 ⊗Fp K.
Hence, by the above, we get

∆(P0) | ∆(P ′
0) = |Op′(G)|.

Finally, by [5, Proposition 3.4], we know that |Op′(G)| | ∆(P0) and the proof is complete.
2

4 Orthogonal indecomposable LCD codes

In order to construct nearly LCD group codes (what we do in the next section) we need a
characterisation of orthogonal indecomposable group codes C. We shall prove that C has
at most two indecomposable direct summands if C is an orthogonal indecomposable LCD
group code.

Definition 4.1 A G-code C is called orthogonal indecomposable if C can not be written
as C = C1 ⊥ C2 with nonzero G-codes Ci.

Recall that an indecomposable LCDG-code is always orthogonal indecomposable, since
it is an indecomposable projective KG-module, but not vice versa.

Theorem 4.2 Let C ≤ KG be an orthogonal indecomposable LCD code. Then one of the
following holds.

a) C = P is an indecomposable projective module whose socle is self-orthogonal if C is
not irreducible.

b) C = P1 ⊕ P2 where 0 ̸= Pi are indecomposable projective G-codes and P1
∼= P ∗

2 .
Moreover, all irreducible submodules of C are self-orthogonal.
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Proof: Observe that C is a projective KG-module. First suppose that C is an indecom-
posable KG-module which is not irreducible. If the socle of C, denoted by soc(C), is not
self-orthogonal, then KG = soc(C)⊕soc(C)⊥. On the other hand we have KG = C⊕C⊥.
Thus soc(C) is a projective KG-module by the Krull-Schmidt theorem, which means that
C must be irreducible, a contradiction. Hence soc(C) is self-orthogonal and we have the
case in a).

Thus we may write
C = P1 ⊕ · · · ⊕ Ps (s ≥ 2)

with indecomposable projective KG-modules Pi ̸= 0. Let Si = soc(Pi). If Si is regular,
i.e., not self-orthogonal, then C = Si, a contradiction to s ≥ 2. This shows that all
irreducible submodules of C are self-orthogonal. Next observe that ⟨· , ·⟩ is regular on
C. Furthermore ⟨S1, P1⟩ = 0 since otherwise C = P1, again a contradiction to s ≥ 2.
Therefore we may assume (eventually we have to change the labelling of the Pi) that

⟨S1, P2⟩ ≠ 0.

In the rest of the proof we show that ⟨· , ·⟩ is regular on P1 ⊕ P2 which completes the
proof. Suppose that the form has a non-zero radical on P1⊕P2 and let S be an irreducible
module contained in the radical. By the assumption ⟨S1, P2⟩ ≠ 0, we see that S is not the
socle S1 of P1. Thus we have

S = {s2 + s2α | s2 ∈ S2}

where α is a homomorphism from S2 into S1 Next observe that

0 = ⟨s2 + s2α, P2⟩ = ⟨s2α, P2⟩

for all s2 ∈ S2. Since ⟨S1, P2⟩ ̸= 0, we get α = 0. Thus S = S2 and ⟨P1, S2⟩ = 0.
Considering the map β : P1 −→ P ∗

2 defined by

β(x)(y) = ⟨x, y⟩

for x ∈ P1 and y ∈ P2, we see that β is injective since ⟨S1, P2⟩ ≠ 0. Thus P1 is a submod-
ule of P ∗

2 . As P1 is an injective KG-module and P ∗
2 is indecomposable, we get P1

∼= P ∗
2 .

This means that ⟨· , ·⟩ is regular on P1 ⊕ P2. Hence C = P1 ⊕ P2, since C is orthogonal
indecomposable. 2

Example 4.3 Let K = F4. Then ⟨ω⟩ = F∗
4 is a cyclic group of order 3. Furthermore, let

G = S3 be the symmetric group on 3 letters, generated by an element g of order 3 and an
involution.

We put e0 = 1+ g+ g2, e1 = 1+ωg+ω2g2 and e2 = 1+ω2g+ωg2. One easily sees
that

KG = P0 ⊥ (P1 ⊕ P2)

where the Pi = eiKG are indecomposable KG-modules of dimension 2. Furthermore,
P1 ⊕ P2 is an orthogonal indecomposable LCD code.
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5 Nearly LCD group codes

Definition 5.1 If C ≤ KG is a group code, then

hull(C) = C ∩ C⊥

is called the hull of C. Note that hull(C) is a KG-submodule of KG, hence a group code.

Definition 5.2 We say that C is a nearly LCD group code if hull(C) = C ∩ C⊥ is an
irreducible (or equivalently a simple) KG-module, i.e., C is a minimal ideal in KG.

Clearly, if C is a nearly LCD code, then hull(C) is a self-orthogonal code, i.e., hull(C) ≤
hull(C)⊥.

Now let
KG = C1 ⊥ · · · ⊥ Cs

with orthogonal indecomposable ideals Ci ≤ KG. Let

∅ ≠ I ⊂ {1, . . . s}.

and put CI = ⊕i∈ICi. Note that the CI is an LCD group code. We choose a self-orthogonal
irreducible ideal

S0 ≤ Cj0

for some j0 ∈ I = {1, . . . , s} \ I and put C = CI ⊕ S0. With this notation we get the
following result.

Theorem 5.3 C = CI ⊕ S0 is a nearly LCD group code.

Proof: First, we suppose that Cj0 is an indecomposable KG-module. Clearly,

S⊥
0 = CI ⊥ CI\j0 ⊥ M

where M is the unique maximal submodule of Cj0 . Note that M ̸= 0, since S has been
chosen self-orthogonal. Thus, we obtain

C ∩ C⊥ = C ∩ (CI ⊕ S0)
⊥ = (C ∩ C⊥

I ) ∩ S⊥
0

= S0 ∩M = S0

since Cj0 is orthogonal indecomposable, and we are done. Thus, according to Proposition
4.2, the module Cj0 is the direct sum of two indecomposable modules, i.e., Cj0 = P1 ⊕ P2

with indecomposable projective modules Pi. We may assume that S0 is the socle of P1

since Cj0 contains a projective cover of S0 which is an injective module, and therefore has
a complement in Cj0 . With the notation as in the first case we get

C ∩ C⊥ = S0 ∩M
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where M is the orthogonal of S0 in Cj0 , which contains S0 since S0 is self-orthogonal. This
completes the proof. 2

Of special interest for applications are nearly LCD codes C which have a 1-dimensional
hull. Such codes have recently been considered in [6] for dihedral groups. The examples
given there are constructed exactly along the lines above, i.e., as in Theorem 5.3. The
final result generalizes ([6], Theorem 3.9).

Lemma 5.4 The trivial module in a group algebra KG is the hull of a nearly LCD code
if and only if char K | |G|.

Proof: Note that T = K
∑

g∈G g is the unique submodule of KG which is trivial. Fur-
thermore, if char K ∤ |G|, then

⟨
∑
g∈G

g,
∑
g∈G

g⟩ = |G| ≠ 0

and T can not the the hull of an almost LCD code. Now suppose that char K | |G|. If P0

is a projective cover of T , then
KG = P0 ⊥ P⊥

0 ,

otherwise KG allows an epimorphism onto T ⊕ T , a contraction. Now we put

C = T ⊕ P⊥
0 .

Then
C⊥ = (T ⊕ P⊥

0 )⊥ = T⊥ ∩ P0 = P0J(KG)

where J(KG) denotes the Jacobson radical of KG. Thus

C ∩ C⊥ = C ∩ P0J(KG) = T.

2

There may exist 1-dimensional hulls of a nearly LCD group codes in the case that the
characteristic of the underlying field does not divide the order of the group. This happens
if the group algebra has an irreducible module which is not self-dual.

Example 5.5 Let char K = p ∤ |G|, hence KG is semisimple. Suppose that C0 is a 1-
dimensional ideal in KG with C0 ̸∼= C∗

0 . This means that C0 is self-orthogonal. Thus, by
Theorem 4.2, we may write

KG = (C0 ⊕ C∗
0 ) ⊥ P

where P is a direct sum of irreducible modules, since KG is semisimple. We put C =
C0 ⊕ P. Clearly, by dimension, we have C⊥

0 = C0 ⊕ P . Thus C ∩ C⊥ = C0.
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