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Abstract—Let C' be a binary extremal self- For m = 1 there is up to equivalence ex-
dual code of length 96. We prove that an au- actly one such code, namely the binary extended
tomorphism of C' of order 3 has 6 or no fixed [24,12,8] Golay code ([15], Theorem 5). Its

points and an automorphism of order 5 has 6 t hi is the Mathi
fixed points. Moreover, if all automorphisms of 2Ulomorpnism group is the Mathieu groupM

order 3 are fixed point free thenAut(C) is solvable  ([13], Ch. 20, Corollary 5). Forn = 2 there is
and its order divides 2°3 or 2°5 or Aut(C) is the again up to equivalence exactly one code, the

alternating group As which is the only possible so-called binary extendelds, 24, 12] quadratic
group of order 60. Furthermore |Aut(C’)| =20 or | acidue code [8]. Its automorphism group is
40 cannot oceur. PSL(2,23) ([11], Theorem 6). Note that in both
cases the automorphism group is a simple non-
I. INTRODUCTION abelian group.

Throughout the paper all codes are assumed Actually for m > 3 no examples are known
to be binary and linear if not explicitly statedso far and the existence of such a code is a long
otherwise. LetC = C* be a binary self-dual standing question in coding theory [17]. In order
code of lengthn and minimum distancd. By to attack the existence problem knowledge of a
results of Mallows-Sloane [14] and Rains [16]possible automorphism group may be helpful.

we have For m = 3, i.e. a self-dual[72,36,16]
d< 4|lg5] +4 if n#22 (mod 24) code, it has been proved in [3] and [4] that
— | 4[] +6 if n=22 (mod 24), the automorphism group has order bounded

(1) Dby 36. In particular, the automorphism group
andC is called extremal self-dual if the equalityis solvable. Ifm = 4, i.e. C is a self-dual

holds. Extremal codes are of particular interegt6, 48, 20] code, then only the primez 3 and
if 24 dividesn since in that case the supports, may divide |Aut(C)| (see [5]). Moreover,
of codewords of a fixed weight form &- elements of ordeb have 16 or 6 fixed points,
design, by a well-known result of Assmus an@lements of ordeB have 24,18,6 or no fixed
Mattson [1]. The parameters 6t are given by points. By [2], involutions are acting fixed
[24m, 12m,4m + 4] for m € N. point freely.
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appropriate size zero matrix. Let resp. Ap
Theorem Let C be an extremal self-dual codebe the codes of length generated byA resp.
of length 96. A and D. Let B resp. Bg be the codes of
a) If o is an automorphism o> of prime length f generated by3 resp.B and E.

orderp then its cycle structure is given by
With this notation we have

p | number of | number of Lemma 1: ([10], Theorem 9.4.1) Ifk; =
p-cycles | fixed points dim A and k; = dim B then

2 48 0 a) (Balance Principle}; — § = ko — 1.

3 30, 32 6,0 b) rankD:rankE:#—kl—kz.

5 18 6 c) A+ = Ap and B+ = Bg.

b) If all elements of ordei3 have no fixed Lemma 2 LgtC be a binary self-dual code
points then AU{C) is solvable of order with minimum d|stancesl.and leto € f_lut(C)
dividing 2°3 or 295, or Aut(C) is the ©Of tYPep-(c;f) wherep is an odd prime and
simple alternating group Awhich is the ¢ = _f < d. Then W(FU(C?) has a ge_nerator
only possible automorphism group of ordefhatrix of the form (1. | E') where L. is the

60. FurthermorgAut(C')| # 20, 40. identity matrix of s_izec. i
Proof: We write gen(w(F,(C))) as in (2)

Il. PRELIMINARIES and apply Lemma 1. The conditigh< d forces
o . ks = 0. Sincec = f, the Balance Principle
. Let C be a b.mary code with an aUtomc’r'yields k1 = 0 and part b) of Lemma 1 implies
phismo of odd prime ordep. If o hasc cycles .
, X -2 that D is regular. Thus
of lengthp and f fixed points we say that is
of type p-(c; f). Without loss of generality we D~ 'gen(n(F,(C))) = (I. | E')

may assume that is a generator matrix of (F,(C)). [ |

c = (1,2,....p)lp+1,p+2,...,2p)... For the rest of this paper we defisg , =
(c—=Dp+1,(c=1)p+2,...,cp). |supfu) N supgv)| for u,v € F3.

Let 9,Q9,...,Q. be the cycle sets, i.e.
Q={G—-1)p+1,(i—1p+2,...,ip}, and
let Qci1,Qcq2,...,Q1¢ be the fixed points
of 0. We put F,(C) = {v € C | vo = v}.
If = : F,(C) — F5*/ denotes the map .
defined byr(v|q,) = v; for somej € Q; and
i=1,2,...,c+ f thenn(F,(C)) is a binary
self-dual [c + f, “}{] code (see [9], Lemma |,
1). Moreover, in case = 1 (mod 4) the code '
m(F,(C)) is doubly-even.

Lemma 3: LetC be a binary code of length
n and minimum distancéd. If u» # v € C with
wt(u) = wt(v) = d then S, , < 4.
Proof: We haved < wt(u+wv) = wt(u) +
(v) — 28, = 2d — 25, from which the
assertion follows. ]

CYCLE-TYPES OF THE AUTOMORPHISMS

Lemma 4: Let C be a self-dual96, 48, 20]
code. ThenC' has no automorphism of tye
(24;24).

Proof: Assume that € Aut(C) is of type
3-(24;24). We consider a generator matrix for

A 0 the self-dual coder(F,(C)) in the form of (2).
gen(n(£5(C)=1| O B |, (2 gjncer = f we getk, = ko, by the Balance

D E Principle (see Lemma 1). Furthermoi8,is a
where the matricest and D have ¢ columns doubly-even[24, k2, d'] code withd" = 20 or
and B resp. E have f columns,O being the d' = 24.

Clearly, a generator matrix ofr(F,(C))
can be written in the form



If k2 > 2 then obviouslyr(F,(C)) and a contradiction again. Thus i) < 20. There-
thereforeC contains a codeword of weight lessfore the vectora must contain at least four
or equal to8, a contradiction. Thug;, = ks < zeros. Consequently, there are at least 4 vectors
1. of the formz; = (0,0,...,1,...,0,0) € F3*

If k2 = 0 thenk; = 0 and by Lemma which are orthogonal ta. By Lemma 1 c), we
1 b), the matrixD is regular. Thus we have obtain againz; € A+ = Ap. The contradiction

gen(w(F,(C))) = (l24|E). Let (e;|v;) be now follows as in casé, = 0. n

the Z:t1h row of E for ¢ = 1,...,24. Since Lemma 5: Let C be a self-dua[96, 48, 20]

Wt(m = (e; [vi)) = 3 + Wt(v;) > 20 we get code. ThenC has no automorphism of type

wt(v;) = 17 or 21. If wt(v;) = 17 and Wi(v;) = (26;18).

21 for some: andj then Proof: Let o € Aut(C) be of type3-
Susw; = | SUPHv;) N SUPRv;) | > 14, (26;18). We consider again a generator matrix

' ) for =(F,(C)) in the form of (2). Sincef =

and therefore Wit (e; + ¢;[v; +v;)) = 18 < 20 we obtaink, = 0 and the Balance

wt(v;) = 21 and wi(v;) = 21 then 7(F,(C)) has a generator matrix of the form
Sviﬂ’j = |SUpF{1}i) ﬂSUPF(Uj” > 18, ( A 0 )

and therefore Wtr—!(e; + e |v; + v;)) = 6 + b E /-

wt(v;+v;) < 12, a contradiction again. Thus weNote that.4 is a doubly-even[26,4, d*] code

have wfv;) = 17 for all i = 1,...,24. Clearly, with d* > 8. Furthermore, the table [6] shows

Sv;w; > 10 andv; # v; for i # j. On the other that the dual distancéd*)* of A is 1 or 2.

hand, forz = (e; |v;) andy = (e; | v;) we have Next we observe that there are no two

Sz.y = Sviv;» and Lemma 3 yields, , < 10. codewordsa,,as € A+ both of weight1. If
ConsequentlyS,,,, = 10 for all i # so then(a; |b;) € 7(F,(C)) with wt(b;) = 17.

j with 4,5 € {1,...,24}. In particular, the |t follows

vectorsv; # v; do not have a coordinaté 1

simultaneously. This implies that the dimension 07 ¢=T7 (a1 +az|bi +b2) €C

of gen(m(F,(C)) is at most3, a contradiction. with wt(c) < 8, a contradiction. Thus if the dual
If k; =1 thenw(F,(C)) has a generator gistance(d*). = 1 then A contains a zero col-

matrix of the form umn. Removing this column we get a doubly-
a 0...0 even [25,4,> 8] code A’ with dual distance
0...0 b , at least2 since there are no two codewords of
D E weight 1 in AL. Clearly, A’ has length25

and dimensior21l. The table in [6] shows that
its minimum distance is at mo& Therefore
At contains codewords of weiglt Now we
choosea; € A' of weighti for i = 1,2.
Thus there exist vectorf; |b;) € w(F,(C))
with wt(by) = 17 and wiby) = 14 or 18.
Consequently Wir—!(a; + az|b1 + b)) <
wt(m (2 |u) + (0]b))) <6410 = 16, 9+ 5 < 20, a contradiction.

Now let (d*)* = 2 and suppose that
ai,az € A+ with a; # ay and Wia;) =
wt(as) = 2. Thus there are vector&; |b;) €
wt(m Ha|b) + 1) < 4, 7(F,(C)) with wt(b;) = 14 or 18 for i = 1,2.

where wtb) = 20 or 24. SinceC is doubly-
even, wta) € {8,12,16,20,24}. Suppose that
wt(a) = 24, i.e.a is the all one vector of length
24. Thus there exists € AL with wt(z) = 2
and (z|u) € ©(F,(C)) with wt(u) > 14. If
wt(b) = 24 it follows that

a contradiction. Hence W) = 20. If 1 denotes
the all one vector of length6 we get



In particular wfb; +b2) < 8. Ifwt(a;+a2) =2 Thereforel5 < wt(z’) < 16. Since C is

then doubly-even we have Wt') = 15. Similarly
Wt(r= (a1 + as | by + bs)) = \:'/t(y’) = 15. This implies that wiz’ + ¢') < 2.
ence
6+ wt(by +b2) <6+ 8 < 20, wt(rL(z+y)) = wt(r=1(110...0 | 2’ +7'))
a contradiction. Therefore Wt; + az) = 4. =10 +wt(z' +y') < 12,
Since a contradiction. -
Wt(m (a1 + az | by + by)) = In conclusion we have shown in this section

that an automorphism of odd prime order of an
12 + wi(by +b2) > 20 extremal self-dual code of lengh6 can only

we obtain wtb; + by) = 8 and wib;) = 14. have the following cycle structures:(18;6),

There are at most four vectobs which satisfy 3-(32;0) or 3-(30;6). Since involutions are

these conditions. Thus there are at most fo@cting fixed point freely by [2], the proof of

vectorsa; € A+ with wt(a;) = 2. Denote the part a) of the theorem is complete.

exact number by < 4. Next we puncture the

code. A on the support of the vectar, + ...+

as. We get either 26 — 2s,4,> 2] code or IV. THE AUTOMORPHISM GROUP

an [18, 3, ZA2] gol(ljet"h'in Cang,: L4 ta(;ld ar Let G = Aut(C) whereC'is a binary self-
",'f a; € A. Call this coded’. Let0 # v € dual [96, 48,20] code. By [5], we know that
AT \.N.t(v) = 1 then we may add zeros at\G\ = 23%5¢ with a,b,c € Ny. According to
thetposnl‘;lons. Ol’ftlsu'mjj S cis)dt_ot.get ?f the assumption in theorem b) we assume from
vector of weig n » & contradiction. 1t ., on that elements of order do act fixed

Wi(v) = 2 then the same construction leads t?)oint freely on the96 coordinates. For some

. O 4

"?“’eC‘Or of weighe in A _d|fferer_1t f“’”?”l for elementary facts from group theory like Sylow’s

i=1,...,s, a contradiction again. This shows
S . L theorem we refer the reader to the textbook [12].

that the minimum distance afl’-- is at least Lemma 7 The order of& divides 243b5¢

3. On the other hand, the table [6] shows that '

the minimum distance of anj26 — 2s, 22 — 2] Whersr%;_{oé}éé'rl' ’ 5; gmljo%v;-iu{k()) ' rlgu acts
code fors = 1,...,4 and any[18, 15] code is : Y. Y group

; regularly, i.e. without fixed points, on tH co-
at most2, which completes the proof. . ) : : ) .
ordinates since involutions have no fixed points.

This impliesa < 5.

Since, by assumption, elements of order
have no fixed points a Sylow-subgroup acts
regularly as well which implie$ < 1.

In order to prove thatt < 1 we may
assume thab | |G| = 2%3°5¢. To compute the

|
Lemma 6: Let C be a self-dual96, 48, 20]
code. ThenC' has no automorphism of tygde
(16;16).
Proof: Sincep = 5 = 1 (mod4)
the spacer(F,(C)) is a doubly-even self-dual

E’]i’r}i d”_] Cdef’ fg (<[9]’d|‘imgg)a itcgrdritrr\]er- numbert of orbits of the action of> on the96
— - oo 9 coordinates of” we use the Cauchy-Frobenius

to Lemma 2 we can take a generator matri ;
of w(F,(C)) of the form gen (x(F,(C))) — femma (see [12], 1A.6 on p 6) which says that

(I | E). If 2 = (100...0 | 2/) and = L N Eix
y=(010...0 | y') denotes the first resp. the |G ; (9)
second row of(I;¢ | E') then !

. . , where FiXg) denotes the number of coordinates
wi(r = () = wi(m((100...0]2")))  \hich are fixed under the action gf Applying
= 54 wt(z') > 20. part a) of the theorem which we have proved in



the previous section and using the assumptidn particular,96 must divides|G| = 240 (since

that elements of orde¥ have no fixed points we
see that only automorphisms of ordier5 or of

even order exist. Thus apart from the identitpf G have length4.

only elements of ordeb have6 fixed points.
Thus

so375e (96 + ord(g)—s 0)

o= (6- 16 + 6y)

wherey € Ny. If G5 = {g € G | ¢° = 1} and
|Gls = 5¢ then5¢ = |G divides|Gs| = y+1,
by ([7], Remark 15.10). Thereforg+ 1 = 5°z
with z € Nj. It follows

1
= —— 6(1545¢
5agbEe 6(154+5°%),

t == W 6(15+(y+1))

hence
273%5¢ . t = 6(15 + 5°2)

from which we deduce < 1. [ ]
Lemma 8: If 15 | |G| then |G| < 60. In
particular, A is the only non-solvable automor-
phism group which may occur.
Proof: LetT be a Sylows-subgroup ofG.

Clearly3 t INg(T)| since there are no elements

of order15. Thus
2%.3-5
2T.5
by ([12], Corollary 1.17). The only possibilities
for (a,z) are

(2,1),(3,2),(4,3),(5,4),(5,0).

|G : Na(T)|= = 27%.3 = 1(mod 5),

In the last casea(= 5 and x = 0) we have
|G| = 32-15 = 480 and G has exactly96

a = 4), a contradiction. In case = 3 we have
t = 2. This can also not happen since the orbits
|

The next two lemmas complete the proof
of the theorem.

Lemma 9: If 15 | |G| thenG = As.

Proof: By Lemma 7 and 8, we have
|G| = 2%-3-5 with a < 2. SinceG does not
have elements of ordd we have in particular
|G| # 15. If |G| = 30 then a Sylows-subgroup
is normal inG, by ([12], 1E.2 p. 38). Hence
a 3-element centralizes &element and we get
again an element of order5 which does not
exist. Suppose thd&| = 60 and solvable. It
has a normal subgroup N of ordepr 5 we find
again an element of orddis, a contradiction.

If |IN| = 4 then there exists a&-complement by
Hall's Theorem (see [12], Theorem 3.13) which
is a group of orded5 and we are done again.
Thus |[N| = 2. Since N is in the center ofG
we see thatz contains a normal subgroup of
order3 or 5 which completes the proof. =
Lemma 10: |G| # 20, 40.
Proof: If |G| 20 then a Sylow5-
subgroup is normal since the number of Sylow
5-subgroups is congrueiit (mod 5). Thus, for
the number of orbits we get

1
20
Clearly, the orbits have siz® or 4. But 20m+
4n = 96 andm +n = 6 has no solution ilNy.

In case|G| = 40 the Sylow5-subgroup is
again normal, by the same argument as above.

t=—(96+6-4) = 6.

Sylow 5-subgroups. Thus the number of orbitsthus the number of orbits is given by

IS

t (96 +96 -4 -6) = 5.

480
This contradicts the fact that the Sylo®-
subgroup has orbits of lengtkf = 32. In all
other cases the number of Sylawsubgroups
is 6 and therefore the number of orbits is

24
235 b
Sincet € Nwe haven < 4. If a = 4 thent = 1.
Thus G acts transitively on th@6 coordinates.

(96 +6-4-6)

1
t=—(96+6-4)=3.
1096 +6-4)

Now the orbits have siz&0 or 8. Since40m +

8n = 96 and m + n = 3 has no solution in
Ny the groupG cannot exist as automorphism
group of C. |
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