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Abstract. In this paper we complete the proof of Brauer’s height zero conjecture

for two primes proposed by G. Malle and G. Navarro.

1. Introduction

The famous Brauer’s height zero conjecture [4] is one of the most important open
problems in the modular representation theory of finite groups. Up to now, the
“if” part of Brauer’s height zero conjecture was proved by Kessar-Malle [12], and
the “only if” part was reduced to checking the so-called inductive Alperin-McKay
condition for all simple groups by Navarro-Späth [23]. In addition, Brauer’s height
zero conjecture is known to hold true for quasi-simple groups by Kessar-Malle [13].

Among the classes of blocks, the trueness of Brauer’s height zero conjecture for
the 2-blocks of maximal defect and for blocks with meta-cyclic defect groups was
shown by Navarro-Tiep [24] and Sambale [27], respectively. Also, Brauer’s height
zero conjecture for principal blocks was proved by Malle-Navarro [18]. Very recently,
the conjecture has been finally proved by Malle-Navarro-Schaeffer Fry-Tiep [19].

Motivated by Brauer’s height zero conjecture, G. Malle and G. Navarro put forward
the following conjecture:

Conjecture 1.1. [17, Conjecture A] Let G be a finite group, and let p and q be
primes. Then the elements of some Sylow p-subgroup of G commute with the elements
of some Sylow q-subgroup of G if and only if the characters in Bp(G) have degree
not divisible by q and the characters in Bq(G) have degree not divisible by p, where
Bp(G) denotes the set of irreducible complex characters in the principal p-block of G.
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In [17], the authors proved the “only if” part of Conjecture 1.1 in full generality,
and the “if” part of Conjecture 1.1 under the assumption that the inductive Alperin-
McKay condition holds true for principal blocks of non-abelian simple groups. In
this paper, we remove their assumption and provide a direct proof of the “if” part.

Theorem 1.2. Conjecture 1.1 holds true.

The proof of Theorem 1.2 depends on the classification theorem of finite simple
groups. Also, the following result about almost simple groups with p-automorphisms
turns out to be crucial.

Theorem 1.3. Let p, q be different primes and let S ≤ A ≤ Aut(S), where S is a
nonabelian simple group with q | |S|. If |A/S| = pa with a positive integer a and S
has a nilpotent Hall {p, q}-subgroup, then exactly one of the following holds:

(1) A has a nilpotent Hall {p, q}-subgroup; or
(2) the conjugation action of P on Bq(S) has a nontrivial orbit, where P ∈

Sylp(A).

2. Proof of Theorem 1.2

Lemma 2.1. Let G be a finite group, and let p and q be primes. Suppose that
G = NP , where N ⊴ G and P is a p-subgroup of G. If N has a p-nilpotent Hall
{p, q}-subgroup, then P normalizes a Sylow q-subgroup of N .

Proof. We first suppose that q = p. Let R be a Sylow q-subgroup of G containing P .
Clearly, R ∩N is a Sylow q-subgroup of N , R ∩N ⊴R and so P normalizes R ∩N .

We now assume that q ̸= p. Let QP0 be a p-nilpotent Hall {p, q}-subgroup of
N , where Q ∈ Sylq(N) and P0 ∈ Sylp(N). Then P0 ∈ NG(Q), and by Frattini’s
argument, we haveG = NNG(Q). Let P1 be a Sylow p-subgroup ofNG(Q) containing
P0. Then P1 is also a Sylow p-subgroup of G since G = NP . Hence there is some
g ∈ G such that P ≤ P g

1 , and therefore P normalizes Qg, as desired. □

Remark 2.2. The conclusion of Lemma 2.1 does not hold true under the assumption
that N has a q-nilpotent Hall {p, q}-subgroup. As an example we may take G =
S4, N = A4, p = 2, q = 3 and P = ⟨(1234)⟩.

For our purpose, we need the so-called generalized p′-core Op∗(G) of a finite group
G, which is defined by Op∗(G) = ⟨N | N ⊴G,N is a p∗-group⟩. Here a finite group
G is called a p∗-group if the following two conditions hold.

(i) Op(G) = G, i.e., G does not have a nontrivial p-factor group.
(ii) Whenever N ⊴G and P ∈ Sylp(N), then G = NCG(P ).
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It is known that Op′(G) ≤ Op∗(G) and for the layer E(G) of G we have E(G) ≤
Op∗(G). Moreover, Op∗(G) is the largest normal p∗-subgroup of G and G is p-
constrained if and only if Op∗(G) = Op′(G). For more details, see [3] or [10, Chap.
X, §14]. Sometimes, E(G) is written as OE(G) for the purpose of convenience.

Let f0,p(G) =
∑

g∈G fgg be the block idempotent of the principal p-block of G over

a splitting field of characteristic p, and let Of0,p(G) be the subgroup of G generated
by supp(f0,p(G)) = {g | fg ̸= 0}. An important fact for us is that supp(f0,p(G)) ≤
Op∗(G) (see [31]).

In addition, we will freely use a theorem of Wielandt [30], stating that if G has
a nilpotent Hall {p, q}-subgroup, then all Hall {p, q}-subgroups of G are conjugate
and each {p, q}-subgroup of G is contained in some Hall {p, q}-subgroup of G.

Theorem 2.3. Let G be a finite group, and let p and q be primes. Then the elements
of some Sylow p-subgroup of G commute with the elements of some Sylow q-subgroup
of G if and only if the characters in Bp(G) have degree not divisible by q and the
characters in Bq(G) have degree not divisible by p.

Proof. By a recent result of Malle and Navarro [18, Theorem A], we may assume
that p ̸= q and pq | |G|. Since the “only if” part of the theorem has been proved in
[17, Theorem 4.1], it suffices to prove the “if” part of the theorem.

We use induction on the order |G| of G. Notice that the hypotheses are inherited
by factor groups and normal subgroups, and that the assertion is equivalent to prove
that G has a nilpotent Hall {p, q}-subgroup. Clearly, O{p,q}′(G) = 1 by induction.

(1) We may assume that G has a unique minimal normal subgroup M .

Proof. Let N be a minimal normal subgroup of G. If p | |G/N | but q ∤ |G/N |, then
any Sylow p-subgroup of G/N is a nilpotent Hall {p, q}-subgroup of G/N , while if
pq | |G/N |, then G/N has a nilpotent Hall {p, q}-subgroup by induction.
Therefore, if N ̸= M are two minimal normal subgroups of G, then both G/N

and G/M have nilpotent Hall {p, q}-subgroups. According to [26, Corollary 8],
G = G/(N ∩ M) has a Hall {p, q}-subgroup, say H. Now, by Wielandt, H is
contained in a Hall {p, q}-subgroup of G/N × G/M , which is nilpotent. Thus H is
a nilpotent Hall {p, q}-subgroup of G. □

(2)We may assume that G = Oq∗(G)P Op∗(G)Q with Op∗(G)Q⊴G and Oq∗(G)P⊴
G, where P ∈ Sylp(G) and Q ∈ Sylq(G).

Proof. It immediately follows from [31] that Irr(G/Op∗(G)) ⊆ Bp(G). Therefore all
irreducible characters of G/Op∗(G) have degrees not divisible by q, and so G/Op∗(G)
has an abelian normal Sylow q-subgroup by [21, Theorem 2.3]. If Q ∈ Sylq(G), then
Op∗(G)Q ⊴ G. Similarly, we have Oq∗(G)P ⊴ G, where P ∈ Sylp(G). If W :=
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Oq∗(G)P Op∗(G)Q ◁ G, then W and so G has a nilpotent Hall {p, q}-subgroup by
induction. So we may assume that G = Oq∗(G)P Op∗(G)Q, as claimed. □

(3) We may assume that K := Op∗(G) ∩ Oq∗(G) ̸= 1. In particular, we have
M ≤ K.

Proof. If Op∗(G) ∩ Oq∗(G) = 1, then either Op∗(G) = 1 or Oq∗(G) = 1, by the
uniqueness of the minimal normal subgroup M of G. Without loss of generality, we
may assume that Op∗(G) = 1, hence Q◁G. Thus we have Q ≤ Op′ G) ≤ Op∗(G) = 1,
a contradiction since pq | |G|. □

(4) We may assume that either Oq∗(G)P = G or Op∗(G)Q = G.

Proof. Suppose that Oq∗(G)P ◁G and Op∗(G)Q◁G. By induction, we may assume
that PM/M ×QM/M is a nilpotent Hall {p, q}-subgroup of G/M with the replace-
ment of a suitable conjugate of Q if necessary. In particular, [P,Q] ⊆ M . Also,
since Op∗(G)Q ◁ G, it follows that Op∗(G)Q has a nilpotent Hall {p, q}-subgroup
by induction. This implies that MQ has a nilpotent Hall {p, q}-subgroup. Note
that P normalizes MQ. Now, replacing N by MQ and G by (MQ)P in Lemma
2.1, we conclude that P normalizes Qx for some x ∈ M . So, [P,Qx] ⊆ Qx. Since
QxM = QM and PM/M ×QM/M is nilpotent, it follows that [P,Qx] ⊆ M . Hence

(2.1) [P,Qx] ⊆ Qx ∩M.

On the other hand, PQx ∩ Oq∗(G)P is a Hall {p, q}-subgroup of Oq∗(G)P which is
nilpotent by induction, since Oq∗(G)P is a proper normal subgroup of G. Therefore,
P (Qx ∩Oq∗(G)) is nilpotent, and so

(2.2) [P,Qx ∩M ] = 1.

Combining (2.1) and (2.2), we obtain [P,Qx] = 1 by [2, Appendix A, Lemma A.2].
Thus G has a nilpotent Hall {p, q}-subgroup, and we are done. □

From now on we suppose that G = Oq∗(G)P .

(5) We may assume that F (G) = 1.

Proof. If M is a q-group, then M ≤ Z(Oq∗(G)), by [10, Chap. X, Lemma 14.3 c)].
Hence for any λ ∈ Irr(M), there is some θ ∈ Bq(Oq∗(G)) such that θ = θ(1)λ by [22,
Theorem 9.4] and Clifford’s Theorem [11, Theorem 6.2]. If the inertia subgroup of θ
in G does not contain a Sylow p-subgroup of G, then all irreducible constituents of
θG have degree divisible by p by the Clifford correspondence [11, Theorem 6.11]. In
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particular, Bq(G) has an irreducible character of degree divisible by p, a contradic-
tion. So θ and hence λ is G-invariant. In particular, λ is P -invariant. It follows, by
Brauer’s permutation lemma, that

(2.3) [P,M ] = 1.

By induction on G/M , we have

(2.4) [P,Q] ⊆ M

after replacing a conjugate of Q if necessary. Thus [P,Q] = 1 by [2, Appendix A,
Lemma A.2], and so G has a nilpotent Hall {p, q}-subgroup.
Now, suppose that M is a p-group. Again by induction on G/M , we have

(2.5) [Q,P ] ⊆ M,

after replacing a conjugate of P if necessary.
If Op∗(G)Q◁G, then by induction, Op∗(G)Q has a nilpotent Hall {p, q}-subgroup.

Hence

(2.6) [Q,M ] = 1.

Thus [Q,P ] = 1 by [2, Appendix A, Lemma A.2], and so G has a nilpotent Hall
{p, q}-subgroup.
Finally, suppose that G = Op∗(G)Q. Repeating the above argument as for the case

where M is a q-group with replacement of q by p, we obtain that G has a nilpotent
Hall {p, q}-subgroup. Thus we may assume that F (G) = 1, as desired. □

By the uniqueness of the minimal normal subgroup M of G, the layer OE(G),
which is indeed equal to M , is a direct product of some copies of a nonabelian simple
group, say S, since F (G) = 1. Note that either p | |S| or q | |S| since O{p,q}′(G) = 1.

(6) The theorem holds if q | |S|.

Proof. Suppose that q | |S|. Then Oq′(G) = 1, since otherwise M ≤ Oq′(G), and so
q ∤ |M |, a contradiction. Write L = Oq∗(G). According to [10, Chap. X, Theorem
14.17], we have

G = LP = Oq′,E(L)Oq∗(CL(Q0))P = OE(L)Oq∗(CL(Q0))P

where Q0 ∈ Sylq(Oq′,E,q(L)) and Oq′,E and Oq′,E,q are as in [10, Chap. X, Definition
14.16]. Since CL(Q0) normalizes each direct factor of OE(L) = OE(G), we deduce
that all direct factors of OE(L) are normal in L. Assume that some factor Si of
OE(L) is not normalized by any Sylow p-subgroup of G. Let θ be a nontrivial
irreducible character of the principal q-block of Si. Considering the inertial subgroup
of the irreducible character ϕ := 1 × · · · × θ × · · · × 1 of the principal q-block of
OE(L), we conclude that all irreducible constituents of ϕG have degree divisible
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by p. In particular, Bq(G) has an irreducible character of degree divisible by p, a
contradiction. Therefore Si is normalized by P x for some x ∈ G, and so Si is normal
in G, since G = LP x. Thus OE(L) = Si and G is an almost simple group with socle
Si

∼= S.
By [17, Theorem 5.1], we may assume that G ̸= S. According to [10, Theo-

rem 14.18] and the first sentence of its following Remarks 14.19 we obtain L =
SOq′(CL(Q0)). Note that S has a nilpotent Hall {p, q}-subgroup by induction. If
G = L, then G has a nilpotent Hall {p, q}-subgroup and we are done.
In the following we let L < G. Applying Theorem 1.3, we may assume that the

conjugation action of P on Bq(S) has a nontrivial orbit. By [1, Lemma 1], the
restriction of characters of L to S induces a bijection between Bq(L) and Bq(S).
Hence the conjugate action of P on Bq(L) also has a nontrivial orbit. This implies
that Bq(G) has an irreducible character of degree divisible by p, a contradiction. □

(7) The theorem holds if q ∤ |S|.

Proof. If q ∤ |S|, then p | |S| and q ∤ |M |. First, suppose that Op∗(G)Q ̸= G.
Replacing N by Op∗(G)Q in Lemma 2.1, we may assume that P normalizes Qx for
some x ∈ G, i.e., [P,Qx] ⊆ Qx. However, PQxM/M is a Hall {p, q}-subgroup of
G/M which is nilpotent by induction. Hence [P,Qx] ⊆ M , and therefore [P,Qx] ⊆
Qx ∩M = 1. Thus G has a nilpotent Hall {p, q}-subgroup.
Finally suppose that G = Op∗(G)Q. Repeating the argument of (6) with the role

of q replaced by p, we deduce that the theorem holds. □

□

3. Almost simple groups

For simple groups S of Lie type other than the Tits simple group, we introduce
the following setup. Let G be a simple algebraic group of adjoint type over an alge-
braically closed field of characteristic r and F : G → G a Steinberg endomorphism,
with finite group of fixed points G := GF such that S = G′.

If F is a Frobenius endomorphism, then it defines an Fr1-rational structure on
G for some power r1 of the characteristic r. In the case that F is not a Frobenius
endomorphism we let r1 be the absolute value of all eigenvalues of F

2 on the character
group of an F -stable maximal torus of G; it is an integral power of the characteristic
as well (see [20, §22.1] or [28, §11.6 and Remark 11.15]).
According to [9, Theorem 2.5.1], Aut(S) is generated by the inner automorphisms,

diagonal automorphisms, field automorphisms and graph automorphisms of S. Fur-
thermore, by [9, Lemma 2.5.8.(a)], the group G is exactly the subgroup of Aut(S)
generated by S and its diagonal automorphisms.
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To proceed, we introduce some notation. For an integer n we write np for the
largest power of p dividing n, and for a group H and x ∈ H, we denote by xH the
conjugacy class of x in H. If q is a prime, which is coprime to r1, we denote by
e := eq(r1) the multiplicative order of r1 modulo q if q ̸= 2, respectively

e2(r1) =

{
1 if r1 ≡ 1 (mod 4),
2 if r1 ≡ −1 (mod 4).

In addition, for a positive integer m let Φm(x) ∈ Z[x] denote the cyclotomic polyno-
mial whose roots are the primitive m-th roots of unity.

Proposition 3.1. Let S be a finite simple group of Lie type other than the Tits
simple group, and let (G, F ) be as above such that S = G′. Let p and q be different
primes with q ̸= r and q | |S|. Suppose that S has a nilpotent Hall {p, q}-subgroup,
and that S ≤ A ≤ Aut(S) with |A/S| = pa for some positive integer a. If A does not
have a nilpotent Hall {p, q}-subgroup, then A = S⟨ϕ⟩ for some field automorphism ϕ
of S (and also of G), and S has a q-element s such that the conjugacy class sG of s
in G is not fixed by the conjugation action of A on S.

Proof. Let e = ordq(r1). We first prove the first conclusion of the proposition. It is
true if p ∤ |S| by [9, Theorem 7.1.2].

So we may assume that p | |S|. Since S has a nilpotent Hall {p, q}-subgroup, it
follows by [17, Proposition 3.4] that p and q are not the defining characteristic of S.
Using the duality between G and its simply-connected correspondent, we get by [17,
Lemma 3.1 and Proposition 3.5] that p, q are odd and a Hall {p, q}-subgroup of S is
abelian and contained in some Sylow Φe-torus of G with e = ordq(r1) = ordp(r1).
Note that only S = D4(r1) has a graph automorphism of odd order, namely 3.

But for p = 3, the Sylow 3-subgroups of D4(r1) are not abelian, a contradiction.
Suppose that A induces diagonal automorphisms on S. Then

(i) S = An(r1) and p | (n+ 1, r1 − 1),
(ii) S = 2An(r1) and p | (n+ 1, r1 + 1),
(iii) S = E6(r1) and p = 3 | (r1 − 1), or
(iv) S = 2E6(r1) and p = 3 | (r1 + 1).

In the cases (i) and (iii) we get e = 1, and in the cases (ii) and (iv) e = 2. By [15,
Proposition 2.2], Φe(ri) is the unique cyclotomic polynomial factor in |G| divisible by
p. According to [16, Lemma 5] we have p | Φep(r1). Since in the cases (i) and (ii) the
polynomial Φep(r1) also occurs in |G| we obtain a contradiction by the uniqueness
of Φe(ri) which is divisible by p. Also, since in the cases (iii) and (iv), Φ3(r1) and
Φ6(r1) occur in |G| we obtain a contradiction by the same argument. Thus A = S⟨ϕ⟩
for some field automorphism ϕ of S, as desired.
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Before we proceed with the proof of the second conclusion we collect some useful
facts. First notice that in all cases the prime p is odd. Furthermore,

|G|r′ =
∏
m∈∆

Φm(r1)
am ,

where ∆ is a set of some positive integers and am > 0 for all m ∈ ∆ (see [8, Section
10-1]). By [8, Section 9-1],

|CG(ϕ)|r′ =
∏
m∈∆

Φm(r0)
am ,

where r1 = rp
a

0 .
Clearly, ϕ does not centralize any Sylow q-subgroup of S since A does not have a

nilpotent Hall {p, q}-subgroup. Hence
|CG(ϕ)|q < |G|q.

Let e0 = eq(r0). Since r1 = rp
a

0 , it follows by the formula for orders of elements
and their powers in a group that e0 = e · gcd(pa, e0). Assume that q | Φe(r0). Then
e0 ≤ e and so e0 = e. Since by [14, Lemma 5.2 (a)] Φe(x) is the only cyclotomic
factor of xepa − 1 with q | Φe(r0), we see that

Φe(r0)q = Φe(r1)q.

Furthermore, by [16, Lemma 5], q | Φm(r0) if and only if m = eqj for some j ≥ 0, if
and only if q | Φm(r1), in which case (Φm(r0)

am)q = (Φm(r1)
am)q. Thus

|CG(ϕ)|q = |G|q,
a contradiction. Therefore e0 > e (i.e., gcd(pa, e0) ̸= 1) and so e0 is divisible by pe.
In particular, p | e0 and e0 ≥ p. Also, q is odd since otherwise r0 is odd and so e0 = 1
or 2, a contradiction.

In order to prove now the second conclusion of the proposition, we first deal with
classical simple groups, so that S is of type An(r1),

2An(r1), Bn(r1), Cn(r1), Dn(r1)
or 2Dn(r1) and ϕ is induced by a power of the Frobenius automorphism of Fr sending
each element to its rth-power. Let ξ be a primitive (re1 − 1)q-th root of unity.
In the following the existence of the chosen x follows immediately from the struc-

ture of maximal tori which have been determined in [5].

Type An(r1). In this case we have S = PSLn+1(r1), G = PGLn+1(r1), and
∆ = {1, . . . , n + 1}. Let ¯ : GLn+1(r1) → G be the natural epimorphism. Note that
e ≤ n+1

3
, since 3e ≤ pe | e0 ≤ n+ 1.

First, we consider the case e = 1, hence n ≥ 2. We put x = diag(ξ, ξ−1, 1, . . . , 1) ∈
SLn+1(r1). Thus

ϕ(x) = diag(ξr0 , ξ−r0 , 1, . . . , 1) = xr0
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and x, ϕ(x) ∈ S. We claim that x and ϕ(x) are not conjugate in G. If they were
conjugate, then there exists z = diag(λ, λ, . . . , λ) ∈ Z(GLn+1(r1)) such that xz and
ϕ(x) are conjugate in GLn+1(r1). Thus det(z) = λn+1 = 1 and xz and ϕ(x) have the
same eigenvalues.

If n > 2, then λ = 1 by comparing the eigenvalues of x and ϕ(x). Thus ξ = ξ±r0 ,
and so e0 = 1, 2 < p, a contradiction. In the case n = 2 we have {λξ, λξ−1, λ} =
{ξr0 , ξ−r0 , 1}. Hence λ = 1 (contradiction as above) or 1 ̸= λ = ξ±r0 . Thus 1 = λ3 =
ξ±3r0 . Since q ∤ r0, we get ξ3 = 1, hence q = 3 and e0 = 1, 2, a contradiction.
Now let e > 1. Let x ∈ SLn+1(r1) be similar to

diag(ξ, ξr1 , . . . , ξr
e−1
1 , 1, . . . , 1)

in GLn+1(Fr). Then x ∈ S and ϕ(x) is similar to

diag(ξr0 , ξr0r1 , . . . , ξr0r
e−1
1 , 1, . . . , 1)

in GLn+1(Fr).

Suppose that x and ϕ(x) are conjugate in G = PGLn+1(r1). Then xz and ϕ(x) are
conjugate in GLn+1(r1). By comparing their eigenvalues we see that λ = 1. Since

e ≤ n+1
3

and ξr0 = ξr
j
1 for some 0 ≤ j ≤ e − 1, it follows that ξr

paj−1
0 −1 = 1, and so

q | (rp
aj−1

0 − 1). This implies e0 | (paj − 1), a contradiction to p | e0.
Hence x and ϕ(x) are not conjugate in G, that is, ϕ does not fix the conjugacy

class xG of x in G.

Type 2An(r1). In this case we have S = PSUn+1(r1) and G = PGUn+1(r1), where
n ≥ 2. Let ¯ : GUn+1(r1) → G denote the natural epimorphism.

If e = 2 we put x = diag(ξ, ξ−1, 1, . . . , 1), if e = 1 we choose x ∈ SUn+1(r1) such
that x is GLn+1(Fr)-conjugate to diag(ξ, ξ−1, 1, . . . , 1), and for e > 2 we choose x ∈
SUn+1(r1) such that x is GLn+1(Fr)-conjugate to diag(ξ, ξ−r1 , . . . , ξ(−r1)e−1

, 1, . . . , 1).

Again we suppose that x and ϕ(x) are conjugate in G.
In the cases e = 1, 2, we may argue as in the case An(r1) for e = 1 to get a

contradiction. Finally let e > 2. Since xz is not a q-element whenever λ ̸= 1, we see
that x and ϕ(x) are G-conjugate if and only if x and ϕ(x) are GLn+1(Fr)-conjugate

(i.e., λ = 1). Thus it follows that ξr0 = ξ(−r1)j , or equivalently,

ξr0(r
paj−1
0 −(−1)j) = 1

for some 1 ≤ j ≤ e− 1. Hence 2 ̸= p | e0 | 2(paj − 1), a contradiction.

Type Cn(r1). In this case, S = PSp2n(r1) and G = PCSp2n(r1), where n > 1.
Observe that q-elements of S are conjugate in G if and only if their pre-images in
Sp2n(r1) with the same order are conjugate in CSp2n(r1).
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Let x ∈ Sp2n(r1) be such that x is GL2n(Fr)-conjugate to

diag(D, 1, . . . , 1, D−1, 1, . . . , 1),

where D = diag(ξ, ξr1 , . . . , ξr
e−1
1 ). The choice of D is possible as e ≤ 2n

3
.

Now if x and ϕ(x) are conjugate in G, then

ξ = ξ±r0r
j
1 for some 0 ≤ j ≤ e− 1,

= ξ±rp
aj+1

0 .

Thus e0 | 2(paj + 1), a contradiction since 2 ̸= p | e0.
Type Bn(r1). In this case, we have S = Ω2n+1(r1) and G = SO2n+1(r1), where

n > 1. Furthermore, we may assume that r1 is odd since otherwise SO2n+1(r1) ∼=
Sp2n(r1) which has been already proved in the previous case.

The argument now runs exactly as in the case Cn(r1), where x ∈ S is GL2n+1(Fr)-
conjugate to

diag(1, D, 1, . . . , 1, D−1, 1, . . . , 1)

with D = diag(ξ, ξr1 , . . . , ξr
e−1
1 ).

Type Dn(r1) or 2Dn(r1), where n ≥ 4. Now we have S = PΩ±
2n(r1) and G =

P(CO±
2n(r1)

◦), and we can argue as in the case Cn(r1) with the same x. The existence
of x can be guaranteed by [5, Section 4 and 5].

We now handle simple groups of exceptional type, so that S is of type 2B2(r1),
2G2(r1),

2F4(r1),
3D4(r1), G2(r1), F4(r1), E6(r1),

2E6(r1), E7(r1) or E8(r1). For conve-
nience, we list the order of G with ∆ in Table 1, where Φi = Φi(r1). Also, we collect
the possible lower bound for p in the last column of Table 1 if p ∤ |S|. For instance,
if S = G2(r1) then 2 · 3 | |S|, so if p ∤ |S| then p ≥ 5. In addition, if S = 2B2(r1),
then 3 ∤ |S| and so if p ∤ |S|, then p ≥ 3.

We claim that |CG(ϕ)|q = 1. Assume that q | |CG(ϕ)|. Then we have e0 ∈ ∆.
We first suppose that p ∤ |S|. Note that pe | e0. If S = G2(r1), then the possibilities

for e0 are 3 or 6 by Table 1, both of which contradict the fact that p ≥ 5. For the
remaining cases, a similar argument follows. So the claim holds in this case.

We now assume that p | |S|. Recall that Φe(r1) is the unique cyclotomic polynomial
factor of the order polynomial of G which is divisible by p (and q). Furthermore, e0
is divisible by ep. Clearly, S ̸= 2B2(r1) since p is odd.

Suppose that S = G2(r1). By Table 1, we see that e0 = 3 or 6 and so p = 3. Since
p ̸= r, it follows by [16, Lemma 5] that p divides either Φ1(r1) and Φ3(r1) or Φ2(r1)
and Φ6(r1), a contradiction.
Suppose that S = 3D4(r1). Since e0 ∈ {3, 6, 12}, we again have p = 3, which

similarly leads to a contradiction. The same argument is also valid for the case
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Table 1. Order of |G| and lower bound for p when p ∤ |S|

S |G| ∆ p ≥

G2(r1) r61Φ
2
1Φ

2
2Φ3Φ6 {1, 2, 3, 6} 5

3D4(r1) r121 Φ2
1Φ

2
2Φ

2
3Φ

2
6Φ12 {1, 2, 3, 6, 12} 5

F4(r1) r241 Φ4
1Φ

4
2Φ

2
3Φ

2
4Φ

2
6Φ8Φ12 {1, 2, 3, 4, 6, 8, 12} 5

E6(r1) r361 Φ6
1Φ

4
2Φ

3
3Φ

2
4Φ5Φ

2
6Φ8Φ9Φ12 {1, 2, 3, 4, 5, 6, 8, 9, 12} 5

2E6(r1) r361 Φ4
1Φ

6
2Φ

2
3Φ

2
4Φ

3
6Φ8Φ10Φ12Φ18 {1, 2, 3, 4, 6, 8, 10, 12, 18} 5

E7(r1) r631 Φ7
1Φ

7
2Φ

3
3Φ

2
4Φ5Φ

3
6Φ7Φ8Φ9Φ10Φ12Φ14Φ18 {1, . . . , 10, 12, 14, 18} 7

E8(r1) r1201 Φ8
1Φ

8
2Φ

4
3Φ

4
4Φ

2
5Φ

4
6Φ7Φ

2
8Φ9Φ

2
10Φ

2
12Φ14Φ15Φ18Φ20Φ24Φ30 {1, . . . , 10, 12, 14, 15, 18, 20, 24, 30} 7

2B2(r1) r21Φ1Φ4 {1, 4} 3

2F4(r1) r121 Φ2
1Φ

2
2Φ

2
4Φ6Φ12 {1, 2, 4, 6, 12} 5

2G2(r1) r31Φ1Φ2Φ6 {1, 2, 6} 5

S = 2G2(r1) or 2F4(r1). If S = E6(r1), then p = 3 and e = 1 or 2, or p = 5 and
e = 1. In any case, Φe(r1) is not the unique cyclotomic polynomial factor of the
order polynomial of G which is divisible by p, a contradiction. A similar argument
holds true for S = 2E6(r1), E7(r1) or E8(r1). This proves the claim |CG(ϕ)|q = 1.

According to [9, Theorem 2.5.17], there is a Steinberg endomorphism σ of G such
that F ∈ ⟨σ⟩ and σ induces the field automorphism ϕ of S which can also be viewed
as a field automorphism of G. Hence the finite group G1 := Gσ of fixed points is
exactly the centralizer CG(ϕ) of ϕ in G. In particular, |G1|q = 1.

Assume that σ(s) = sg for some nontrivial q-element s of G and g ∈ G. Recall
that 2B2(r1) will not occur as S. Thus, if q = 3, then |CG(ϕ)|3 ̸= 1 for all possible
types of S, a contradiction. This implies q ≥ 5 and s must be an element of S.
By the Lang-Steinberg Theorem [20, Theorem 21.7], there is some x ∈ G such that
g−1 = σ(x)x−1. We have

σ(sx) = σ(s)σ(x) = (x−1g) · (g−1sg) · (g−1x) = sx.

Hence sx ∈ G1, and so q | |G1|, a contradiction. Thus, σ and so ϕ does not fix the
conjugacy class of some q-element of S in G, which finishes the proof. □
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Proof of Theorem 1.3. According to [17, Propositions 3.2-3.3], among the sporadic
simple groups, the alternating groups and the Tits simple group, which have a nilpo-
tent Hall {p, q}-subgroup, are only J1 with {p, q} = {3, 5} and J4 with {p, q} = {5, 7},
both of which imply A = S and so do not occur in our situation. Thus S is a group
of Lie type.

We first suppose that pq | |S|. Note that q is not the defining characteristic of
S, by [17, Proposition 3.4]. Thus, by Proposition 3.1, A = S⟨ϕ⟩ for some field
automorphism ϕ of S of order pa and ϕ does not fix the conjugacy class of some
q-element s of S in the subgroup of Aut(S) generated by the inner automorphisms
and the diagonal automorphisms of S.
Let G be a simple simply-connected algebraic group and let F be a Frobenius en-

domorphism of G such that S = GF/Z(GF ). As mentioned in the second paragraph
of the proof of Proposition 3.1, the primes p, q are odd and different from the defining
characteristic of S, and any Hall {p, q}-subgroup of G is abelian and contained in
some Sylow Φe-torus of G, where e = ordp(r1) = ordq(r1).

Let (G∗, F ∗) be in duality with (G, F ) (see [6, Section 4.3] for instance). Write
G∗ := (G∗)F

∗
and S∗ := (G∗)′ so that |G| = |G∗| by [6, Proposition 4.4.4], and

S∗ ∼= S unless S is of type Bn or Cn. Moreover, it follows from [6, Corollary 4.4.2]
that G∗ also has an abelian Hall {p, q}-subgroup whose order is the same as for G.

The field automorphism ϕ of S induces a field automorphism ϕ∗ of S∗ of order pa.
According to [9, Theorem 2.5.17], there exists a Steinberg endomorphism σ∗ of G∗

such that F ∗ = (σ∗)p
a
and σ∗ induces ϕ∗. Since, by assumption, A does not have

a nilpotent Hall {p, q}-subgroup, ϕ does not centralize any Sylow q-subgroup of S.
Thus |CGF (ϕ)|q < |GF |q. Furthermore,

|CGF (ϕ)|q = |CG(σ)|q = |CG∗(σ∗)|q = |CG∗(ϕ∗)|q
and

|GF |q = |G∗|q.
Hence |CG∗(ϕ∗)|q < |G∗|q. Thus ϕ∗ does not centralize any Sylow q-subgroup of G∗.
Now by Proposition 3.1, ϕ∗ does not fix the conjugacy class of some q-element s of
S∗ in G∗.

By [29, Proposition 7.2], the Lusztig series E(G, s) corresponding to s is not fixed
by ϕ. On the other hand, by [12, Theorem 2.3], Bq(G) ⊆

∐
t E(G, t), and there is a

character in E(G, t) which lies in the principal q-block of G, where t runs through all
q-elements of G∗ up to conjugation. Hence there is a character χ in E(G, s), which
lies in the principal q-block of G and is not fixed by ϕ. Since s ∈ S∗ = [G∗, G∗], we
have kerχ = Z(G) by [25, Lemma 4.4], so χ is indeed a character of S. Thus the
theorem holds in this case.
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We now suppose that p ∤ |S|. Then S is of Lie type other than the Tits simple
group, and we may assume that A = S⟨ϕ⟩ for some field automorphism ϕ of S, by
[9, Theorem 7.1.2]. We may further assume that A does not have nilpotent Hall
{p, q}-subgroups. If q ̸= r, we may similarly argue as above with Proposition 3.1.
Finally, let q = r. In this case, all irreducible characters of S apart from the Steinberg
character of S lie in Bq(S). If A acts trivially on Bq(S), then A fixes all irreducible
characters of S, since the Steinberg character of S is invariant under the conjugate
action of Aut(S). Thus, by Brauer’s permutation lemma, ϕ fixes all conjugacy classes
of S, a contradiction to [7, Theorem C]. This finishes the proof. □

Acknowledgements. We are deeply grateful to Gunter Malle and Gabriel Navarro
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